The Statistical Analysis of Interval-censored Failure Time Data PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download The Statistical Analysis of Interval-censored Failure Time Data PDF full book. Access full book title The Statistical Analysis of Interval-censored Failure Time Data by Jianguo Sun. Download full books in PDF and EPUB format.

The Statistical Analysis of Interval-censored Failure Time Data

The Statistical Analysis of Interval-censored Failure Time Data PDF Author: Jianguo Sun
Publisher: Springer
ISBN: 9780387329055
Category : Mathematics
Languages : en
Pages : 304
Book Description
This book collects and unifies statistical models and methods that have been proposed for analyzing interval-censored failure time data. It provides the first comprehensive coverage of the topic of interval-censored data and complements the books on right-censored data. The focus of the book is on nonparametric and semiparametric inferences, but it also describes parametric and imputation approaches. This book provides an up-to-date reference for people who are conducting research on the analysis of interval-censored failure time data as well as for those who need to analyze interval-censored data to answer substantive questions.

The Statistical Analysis of Interval-censored Failure Time Data

The Statistical Analysis of Interval-censored Failure Time Data PDF Author: Jianguo Sun
Publisher: Springer
ISBN: 9780387329055
Category : Mathematics
Languages : en
Pages : 304
Book Description
This book collects and unifies statistical models and methods that have been proposed for analyzing interval-censored failure time data. It provides the first comprehensive coverage of the topic of interval-censored data and complements the books on right-censored data. The focus of the book is on nonparametric and semiparametric inferences, but it also describes parametric and imputation approaches. This book provides an up-to-date reference for people who are conducting research on the analysis of interval-censored failure time data as well as for those who need to analyze interval-censored data to answer substantive questions.

Statistical Analysis of Interval-censored Failure Time Data

Statistical Analysis of Interval-censored Failure Time Data PDF Author: Alicia Worrall
Publisher:
ISBN: 9781339070261
Category : Clinical trials
Languages : en
Pages : 75
Book Description
In this thesis, we will examine the statistical methods used in survival analysis applied to interval-censored failure time data. Interval-censored data is not widely used due to the fact that it is more difficult to work with. However, the same methods commonly used for random- censoring can be applied to interval-censoring as well. This includes finding the basic quantities, survival curves, regression analysis, Bayesian regression analysis and a comparison between interval-censored data and random-censored data.

Statistical Analysis of Multivariate Interval-censored Failure Time Data

Statistical Analysis of Multivariate Interval-censored Failure Time Data PDF Author: Man-Hua Chen
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages :
Book Description
A voluminous literature on right-censored failure time data has been developed in the past 30 years. Due to advances in biomedical research, interval censoring has become increasingly common in medical follow-up studies. In these cases, each study subject is examined or observed periodically, thus the observed failure time falls into a certain interval. Additional problems arise in the analysis of multivariate interval-censored failure time data. These include the estimating the correlation among failure times. The first part of this dissertation considers regression analysis of multivariate interval-censored failure time data using the proportional odds model. One situation in which the proportional odds model is preferred is when the covariate effects diminish over time. In contrast, if the proportional hazards model is applied for the situation, one may have to deal with time-dependent covariates. We present an inference approach for fitting the model to multivariate interval-censored failure time data. Simulation studies are conducted and an AIDS clinical trial is analyzed by using this methodology. The second part of this dissertation is devoted to the additive hazards model for multivariate interval-censored failure time data. In many applications, the proportional hazards model may not be appropriate and the additive hazards model provides an important and useful alternative. The presented estimates of regression parameters are consistent and asymptotically normal and a robust estimate of their covariance matrix is given that takes into account the correlation of the survival variables. Simulation studies are conducted for practical situations. The third part of this dissertation discusses regression analysis of multivariate interval censored failure time data using the frailty model approach. Based on the most commonly used regression model, the proportional hazards model, the frailty model approach considers the random effect directly models the correlation between multivariate failure times. For the analysis, we will focus on current status or case I interval-censored data and the maximum likelihood approach is developed for inference. The simulation studies are conducted to asses and compare the finite-sample behaviors of the estimators and we apply the proposed method to an animal tumorigenicity experiment.

The Statistical Analysis of Interval-censored Failure Time Data

The Statistical Analysis of Interval-censored Failure Time Data PDF Author: Jianguo Sun
Publisher: Springer
ISBN: 0387371192
Category : Mathematics
Languages : en
Pages : 304
Book Description
This book collects and unifies statistical models and methods that have been proposed for analyzing interval-censored failure time data. It provides the first comprehensive coverage of the topic of interval-censored data and complements the books on right-censored data. The focus of the book is on nonparametric and semiparametric inferences, but it also describes parametric and imputation approaches. This book provides an up-to-date reference for people who are conducting research on the analysis of interval-censored failure time data as well as for those who need to analyze interval-censored data to answer substantive questions.

Regression Analysis of Interval-censored Failure Time Data with Non Proportional Hazards Models

Regression Analysis of Interval-censored Failure Time Data with Non Proportional Hazards Models PDF Author: Han Zhang (Graduate of University of Missouri)
Publisher:
ISBN:
Category :
Languages : en
Pages : 135
Book Description
Interval-censored failure time data arises when the failure time of interest is known only to lie within an interval or window instead of being observed exactly. Many clinical trials and longitudinal studies may generate interval-censored data. One common area that often produces such data is medical or health studies with periodic follow-ups, in which the medical condition of interest such as the onset of a disease is only known to occur between two adjacent examination times. An important special case of interval-censored data is the so-called current status data when each study subject is observed only once for the status of the event of interest. That is, instead of observing the survival endpoint directly, we will only know the observation time and whether or not the event of interest has occurred by that time. Such data may occur in many fields as cross-sectional studies and tumorigenicity experiments. Sometimes we also refer current status data as case I interval-censored data and the general case as case II interval-censored data. Recently the semi-parametric statistical analysis of both case I and case II intervalcensored failure time data has attracted a great deal of attention. Many procedures have been proposed for their regression analysis under various models. We will describe the structure of interval-censored data in Chapter 1 and provides two specific examples. Also some special situations like informative censoring and failure time data with missing covariates are discussed. Besides, a brief review of the literature on some important topics, including nonparametric estimation and regression analysis are performed. However, there are still a number of problems that remain unsolved or lack approaches that are simpler, more efficient and could apply to more general situations compared to the existing ones. For regression analysis of interval-censored data, many approaches have been proposed and more specifically most of them are developed for the widely used proportional hazards model. The research in this dissertation focuses on the statistical analysis on non-proportional hazards models. In Chapter 2 we will discuss the regression analysis of interval-censored failure time data with possibly crossing hazards. For the problem of crossing hazards, people assume that the hazard functions with two samples considered may cross each other where most of the existing approaches cannot deal with such situation. Many authors has provided some efficient methods on right-censored failure time data, but little articles could be found on interval-censored data. By applying the short-term and long-term hazard ratio model, we develop a spline-based maximum likelihood estimation procedure to deal with this specific situation. In the method, a splined-based sieve estimation are used to approximate the underlying unknown function. The proposed estimators are shown to be strongly consistent and the asymptotic normality of the estimators of regression parameters are also shown to be true. In addition, we also provided a Cramer-Raw type of criterion to do the model validation. Simulation study was conducted for the assessment of the finite sample properties of the presented procedure and suggests that the method seems to work well for practical situations. Also an illustrative example using a data set from a tumor study is provided. As we discussed in Chapter 1, several semi-parametric and non-parametric methods have been proposed for the analysis of current status data. However, most of them only deal with the situation where observation time is independent of the underlying survival time. In Chapter 3, we consider regression analysis of current status data with informative observation times in additive hazards model. In many studies, the observation time may be correlated to the underlying failure time of interest, which is often referred to as informative censoring. Several authors have discussed the problem and in particular, an estimating equation-based approach for fitting current status data to additive hazards model has been proposed previously when informative censoring occurs. However, it is well known that such procedure may not be efficient and to address this, we propose a sieve maximum likelihood procedure. In particular, an EM algorithm is developed and the resulting estimators of regression parameters are shown to be consistent and asymptotically normal. An extensive simulation study was conducted for the assessment of the finite sample properties of the presented procedure and suggests that it seems to work well for practical situations. An application to a tumorigenicity experiment is also provided. In Chapter 4, we considered another special case under the additive hazards model, case II interval-censored data with possibly missing covariates. In many areas like demographical, epidemiological, medical and sociological studies, a number of nonparametric or semi-parametric methods have been developed for interval-censored data when the covariates are complete. However, it is well-known that in reality some covariates may suffer missingness due to various reasons, data with missing covariates could be very common in these areas. In the case of missing covariates, a naive method is clearly the complete-case analysis, which deletes the cases or subjects with missing covariates. However, it's apparent that such analysis could result in loss of efficiency and furthermore may lead to biased estimation. To address this, we propose the inverse probability weighted method and reweighting approach to estimate the regression parameters under the additive hazards model when some of the covariates are missing at random. The resulting estimators of regression parameters are shown to be consistent and asymptotically normal. Several numerical results suggest that the proposed method works well in practical situations. Also an application to a health survey is provided. Several directions for future research are discussed in Chapter 5.

Interval-Censored Time-to-Event Data

Interval-Censored Time-to-Event Data PDF Author: Ding-Geng (Din) Chen
Publisher: CRC Press
ISBN: 1466504250
Category : Mathematics
Languages : en
Pages : 434
Book Description
Interval-Censored Time-to-Event Data: Methods and Applications collects the most recent techniques, models, and computational tools for interval-censored time-to-event data. Top biostatisticians from academia, biopharmaceutical industries, and government agencies discuss how these advances are impacting clinical trials and biomedical research. Divided into three parts, the book begins with an overview of interval-censored data modeling, including nonparametric estimation, survival functions, regression analysis, multivariate data analysis, competing risks analysis, and other models for interval-censored data. The next part presents interval-censored methods for current status data, Bayesian semiparametric regression analysis of interval-censored data with monotone splines, Bayesian inferential models for interval-censored data, an estimator for identifying causal effect of treatment, and consistent variance estimation for interval-censored data. In the final part, the contributors use Monte Carlo simulation to assess biases in progression-free survival analysis as well as correct bias in interval-censored time-to-event applications. They also present adaptive decision making methods to optimize the rapid treatment of stroke, explore practical issues in using weighted logrank tests, and describe how to use two R packages. A practical guide for biomedical researchers, clinicians, biostatisticians, and graduate students in biostatistics, this volume covers the latest developments in the analysis and modeling of interval-censored time-to-event data. It shows how up-to-date statistical methods are used in biopharmaceutical and public health applications.

Statistical Analysis of Multivariate Interval-censored Failure Time Data

Statistical Analysis of Multivariate Interval-censored Failure Time Data PDF Author: Lianming Wang
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages :
Book Description
Interval-censored failure time data commonly arise in clinical trials and medical studies. In such studies, the failure time of interest is often not exactly observed, but known to fall within some interval. For multivariate interval-censored data, each subject may experience multiple events, each of which is interval-censored. This thesis studies four research problems related to regression analysis and association study of multivariate interval-censored data. In particular, in Chapter 2, we propose a goodness-of-fit test for the marginal Cox model approach, which is the most commonly, used approach in multivariate regression analysis. Chapter 3 presents a two-stage estimation procedure for the association parameter for case 2 bivariate interval-censored data. In Chapter 4 we give a simple procedure to estimate the regression parameter for case 2 interval-censored data and Chapter 5 studies the efficient estimation of regression parameters and association parameter simultaneously for bivariate current status data. All the proposed methods are assessed by simulation studies and illustrated using real-life applications.

Semi-parametric Regression Analysis of Interval-censored Failure Time Data

Semi-parametric Regression Analysis of Interval-censored Failure Time Data PDF Author: Ling Ma
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages :
Book Description
By interval-censored data, we mean that the failure time of interest is known only to lie within an interval instead of being observed exactly. Many clinical trials and longitudinal studies may generate interval-censored data. One common example occurs in medical or health studies that entail periodic follow-ups. An important special case of interval-censored data is the so called current status data when each subject is observed only once for the status of the occurrence of the event of interest. That is, instead of observing the survival endpoint directly, we only know the observation time and whether or not the event of interest has occurred at that time. Such data may occur in many fields, for example, cross-sectional studies and tumorigenicity experiments. Sometimes we also refer current status data to as case I interval-censored data and the general case as case II interval-censored data. In the following, for simplicity, we will refer current status data and interval-censored data to case I and case II interval-censored data, respectively. The statistical analysis of both case I and case II interval-censored failure time data has recently attracted a great deal of attention and especially, many procedures have been proposed for their regression analysis under various models. However, due to the strict restrictions of existing regression analysis procedures and practical demands, new methodologies for regression analysis need to be developed. For regression analysis of interval-censored data, many approaches have been proposed and for most of them, the inference is carried out based on the asymptotic normality. It's well known that the symmetric property implied by the normal distribution may not be appropriate sometimes and could underestimate the variance of estimated parameters. In the first part of this dissertation, we adopt the linear transformation models for regression analysis of interval-censored data and propose an empirical likelihood-based procedure to address the underestimating problem from using symmetric property implied by the normal distribution of the parameter estimates. Simulation and analysis of a real data set are conducted to assess the performance of the procedure. The second part of this dissertation discusses regression analysis of current status data under additive hazards models. In this part, we focus on the situation when some covariates could be missing or cannot be measured exactly due to various reasons. Furthermore, for missing covariates, there may exist some related information such as auxiliary covariates (Zhou and Pepe, 1995). We propose an estimated partial likelihood approach for estimation of regression parameters that make use of the available auxiliary information. To assess the finite sample performance of the proposed method, an extensive simulation study is conducted and indicates that the method works well in practical situations. Several semi-parametric and non-parametric methods have been proposed for the analysis of current status data. However, most of these methods deal only with the situation where observation time is independent of the underlying survival time completely or given covariates. The third part of this dissertation discusses regression analysis of current status data when the observation time may be related to survival time. The correlation between observation time and survival time and the covariate effects are described by a copula model and the proportional hazards model, respectively. For estimation, a sieve maximum likelihood procedure with the use of monotone I-spline functions is proposed and the proposed method is examined through a simulation study and illustrated with a real data set. In the fourth part of this dissertation, we discuss the regression analysis of interval- censored data where the censoring mechanism could be related to the failure time. We consider a situation where the failure time depend on the censoring mechanism only through the length of the observed interval. The copula model and monotone I-splines are used and the asymptotic properties of the resulting estimates are established. In particular, the estimated regression parameters are shown to be semiparametrically efficient. An extensive simulation study and an illustrative example is provided. Finally, we will talk about the directions for future research. One topic related the fourth part of this dissertation for future research could be to allow the failure time to depend on both the lower and upper bounds of the observation interval. Another possible future research topic could be to consider a cure rate model for interval-censored data with informative censoring.

Survival Analysis with Interval-Censored Data

Survival Analysis with Interval-Censored Data PDF Author: Kris Bogaerts
Publisher: CRC Press
ISBN: 1351643053
Category : Mathematics
Languages : en
Pages : 584
Book Description
Survival Analysis with Interval-Censored Data: A Practical Approach with Examples in R, SAS, and BUGS provides the reader with a practical introduction into the analysis of interval-censored survival times. Although many theoretical developments have appeared in the last fifty years, interval censoring is often ignored in practice. Many are unaware of the impact of inappropriately dealing with interval censoring. In addition, the necessary software is at times difficult to trace. This book fills in the gap between theory and practice. Features: -Provides an overview of frequentist as well as Bayesian methods. -Include a focus on practical aspects and applications. -Extensively illustrates the methods with examples using R, SAS, and BUGS. Full programs are available on a supplementary website. The authors: Kris Bogaerts is project manager at I-BioStat, KU Leuven. He received his PhD in science (statistics) at KU Leuven on the analysis of interval-censored data. He has gained expertise in a great variety of statistical topics with a focus on the design and analysis of clinical trials. Arnošt Komárek is associate professor of statistics at Charles University, Prague. His subject area of expertise covers mainly survival analysis with the emphasis on interval-censored data and classification based on longitudinal data. He is past chair of the Statistical Modelling Society?and editor of?Statistical Modelling: An International Journal. Emmanuel Lesaffre is professor of biostatistics at I-BioStat, KU Leuven. His research interests include Bayesian methods, longitudinal data analysis, statistical modelling, analysis of dental data, interval-censored data, misclassification issues, and clinical trials. He is the founding chair of the?Statistical Modelling Society, past-president of the?International Society for Clinical Biostatistics,?and fellow of?ISI?and?ASA.

Statistical Analysis of Bivariate Interval-censored Failure Time Data

Statistical Analysis of Bivariate Interval-censored Failure Time Data PDF Author: Qingning Zhou
Publisher:
ISBN:
Category :
Languages : en
Pages : 135
Book Description
This dissertation deals with various issues in the statistical analysis of bivariate interval-censored failure time data, including regression analysis, model selection and estimation of the association between failure times. In particular, it includes three projects. The first project discusses regression analysis of bivariate current status data under the marginal proportional hazards model. For the problem, by using Bernstein polynomials and an unspecified copula model, we develop a sieve maximum likelihood estimation approach that applies to very general situations. In particular, it allows one to estimate the underlying copula model and can be easily implemented. The strong consistency, asymptotic normality and efficiency of the estimators of regression parameters are established. In the second project, we consider regression analysis of bivariate case II interval-censored data. For this problem, we present a class of semiparametric transformation models which is very flexible and in particular includes the commonly used proportional hazards model as a special case. Also, for inference, we develop a sieve maximum likelihood approach based on Bernstein polynomials. The strong consistency, asymptotic normality and efficiency of the resulting estimators of the regression parameters are established. In the third project, we consider the class of semiparametric copula-based models, in which multivariate survival functions are characterized by parametric copulas and nonparametric marginal survival functions. One important issue in applying this class of models to a given data set is how to choose an appropriate parametric copula. We propose two model selection procedures for Archimedean copulas with bivariate interval-censored data. The first procedure is based on a comparison of the nonparametric and model-based estimators of the probability integral transformation K, while the second procedure is based on a pseudo-likelihood function.