Structural Equations with Latent Variables PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Structural Equations with Latent Variables PDF full book. Access full book title Structural Equations with Latent Variables by Kenneth A. Bollen. Download full books in PDF and EPUB format.

Structural Equations with Latent Variables

Structural Equations with Latent Variables PDF Author: Kenneth A. Bollen
Publisher: John Wiley & Sons
ISBN: 111861903X
Category : Mathematics
Languages : en
Pages : 528
Book Description
Analysis of Ordinal Categorical Data Alan Agresti Statistical Science Now has its first coordinated manual of methods for analyzing ordered categorical data. This book discusses specialized models that, unlike standard methods underlying nominal categorical data, efficiently use the information on ordering. It begins with an introduction to basic descriptive and inferential methods for categorical data, and then gives thorough coverage of the most current developments, such as loglinear and logit models for ordinal data. Special emphasis is placed on interpretation and application of methods and contains an integrated comparison of the available strategies for analyzing ordinal data. This is a case study work with illuminating examples taken from across the wide spectrum of ordinal categorical applications. 1984 (0 471-89055-3) 287 pp. Regression Diagnostics Identifying Influential Data and Sources of Collinearity David A. Belsley, Edwin Kuh and Roy E. Welsch This book provides the practicing statistician and econometrician with new tools for assessing the quality and reliability of regression estimates. Diagnostic techniques are developed that aid in the systematic location of data points that are either unusual or inordinately influential; measure the presence and intensity of collinear relations among the regression data and help to identify the variables involved in each; and pinpoint the estimated coefficients that are potentially most adversely affected. The primary emphasis of these contributions is on diagnostics, but suggestions for remedial action are given and illustrated. 1980 (0 471-05856-4) 292 pp. Applied Regression Analysis Second Edition Norman Draper and Harry Smith Featuring a significant expansion of material reflecting recent advances, here is a complete and up-to-date introduction to the fundamentals of regression analysis, focusing on understanding the latest concepts and applications of these methods. The authors thoroughly explore the fitting and checking of both linear and nonlinear regression models, using small or large data sets and pocket or high-speed computing equipment. Features added to this Second Edition include the practical implications of linear regression; the Durbin-Watson test for serial correlation; families of transformations; inverse, ridge, latent root and robust regression; and nonlinear growth models. Includes many new exercises and worked examples. 1981 (0 471-02995-5) 709 pp.

Structural Equations with Latent Variables

Structural Equations with Latent Variables PDF Author: Kenneth A. Bollen
Publisher: John Wiley & Sons
ISBN: 111861903X
Category : Mathematics
Languages : en
Pages : 528
Book Description
Analysis of Ordinal Categorical Data Alan Agresti Statistical Science Now has its first coordinated manual of methods for analyzing ordered categorical data. This book discusses specialized models that, unlike standard methods underlying nominal categorical data, efficiently use the information on ordering. It begins with an introduction to basic descriptive and inferential methods for categorical data, and then gives thorough coverage of the most current developments, such as loglinear and logit models for ordinal data. Special emphasis is placed on interpretation and application of methods and contains an integrated comparison of the available strategies for analyzing ordinal data. This is a case study work with illuminating examples taken from across the wide spectrum of ordinal categorical applications. 1984 (0 471-89055-3) 287 pp. Regression Diagnostics Identifying Influential Data and Sources of Collinearity David A. Belsley, Edwin Kuh and Roy E. Welsch This book provides the practicing statistician and econometrician with new tools for assessing the quality and reliability of regression estimates. Diagnostic techniques are developed that aid in the systematic location of data points that are either unusual or inordinately influential; measure the presence and intensity of collinear relations among the regression data and help to identify the variables involved in each; and pinpoint the estimated coefficients that are potentially most adversely affected. The primary emphasis of these contributions is on diagnostics, but suggestions for remedial action are given and illustrated. 1980 (0 471-05856-4) 292 pp. Applied Regression Analysis Second Edition Norman Draper and Harry Smith Featuring a significant expansion of material reflecting recent advances, here is a complete and up-to-date introduction to the fundamentals of regression analysis, focusing on understanding the latest concepts and applications of these methods. The authors thoroughly explore the fitting and checking of both linear and nonlinear regression models, using small or large data sets and pocket or high-speed computing equipment. Features added to this Second Edition include the practical implications of linear regression; the Durbin-Watson test for serial correlation; families of transformations; inverse, ridge, latent root and robust regression; and nonlinear growth models. Includes many new exercises and worked examples. 1981 (0 471-02995-5) 709 pp.

Structural Equations with Latent Variables

Structural Equations with Latent Variables PDF Author: Bollen
Publisher: Wiley-Blackwell
ISBN: 9780471321071
Category :
Languages : en
Pages : 576
Book Description


Structural Equation Modeling

Structural Equation Modeling PDF Author: Rick H. Hoyle
Publisher: SAGE
ISBN: 9780803953185
Category : Reference
Languages : en
Pages : 316
Book Description
Reviews some of the major issues facing researchers who wish to use structural equation modeling. This title includes individual chapters that present developments on specification, estimation and testing, statistical power, software comparisons and analyzing multitrait/multimethod data.

Generalized Latent Variable Modeling

Generalized Latent Variable Modeling PDF Author: Anders Skrondal
Publisher: CRC Press
ISBN: 0203489438
Category : Mathematics
Languages : en
Pages : 528
Book Description
This book unifies and extends latent variable models, including multilevel or generalized linear mixed models, longitudinal or panel models, item response or factor models, latent class or finite mixture models, and structural equation models. Following a gentle introduction to latent variable modeling, the authors clearly explain and contrast a wi

Structural Equation Modeling

Structural Equation Modeling PDF Author: Jichuan Wang
Publisher: John Wiley & Sons
ISBN: 111942271X
Category : Mathematics
Languages : en
Pages : 536
Book Description
Presents a useful guide for applications of SEM whilst systematically demonstrating various SEM models using Mplus Focusing on the conceptual and practical aspects of Structural Equation Modeling (SEM), this book demonstrates basic concepts and examples of various SEM models, along with updates on many advanced methods, including confirmatory factor analysis (CFA) with categorical items, bifactor model, Bayesian CFA model, item response theory (IRT) model, graded response model (GRM), multiple imputation (MI) of missing values, plausible values of latent variables, moderated mediation model, Bayesian SEM, latent growth modeling (LGM) with individually varying times of observations, dynamic structural equation modeling (DSEM), residual dynamic structural equation modeling (RDSEM), testing measurement invariance of instrument with categorical variables, longitudinal latent class analysis (LLCA), latent transition analysis (LTA), growth mixture modeling (GMM) with covariates and distal outcome, manual implementation of the BCH method and the three-step method for mixture modeling, Monte Carlo simulation power analysis for various SEM models, and estimate sample size for latent class analysis (LCA) model. The statistical modeling program Mplus Version 8.2 is featured with all models updated. It provides researchers with a flexible tool that allows them to analyze data with an easy-to-use interface and graphical displays of data and analysis results. Intended as both a teaching resource and a reference guide, and written in non-mathematical terms, Structural Equation Modeling: Applications Using Mplus, 2nd edition provides step-by-step instructions of model specification, estimation, evaluation, and modification. Chapters cover: Confirmatory Factor Analysis (CFA); Structural Equation Models (SEM); SEM for Longitudinal Data; Multi-Group Models; Mixture Models; and Power Analysis and Sample Size Estimate for SEM. Presents a useful reference guide for applications of SEM while systematically demonstrating various advanced SEM models Discusses and demonstrates various SEM models using both cross-sectional and longitudinal data with both continuous and categorical outcomes Provides step-by-step instructions of model specification and estimation, as well as detailed interpretation of Mplus results using real data sets Introduces different methods for sample size estimate and statistical power analysis for SEM Structural Equation Modeling is an excellent book for researchers and graduate students of SEM who want to understand the theory and learn how to build their own SEM models using Mplus.

The SAGE Handbook of Social Science Methodology

The SAGE Handbook of Social Science Methodology PDF Author: William Outhwaite
Publisher: SAGE
ISBN: 1446206459
Category : Social Science
Languages : en
Pages : 641
Book Description
"An excellent guidebook through different approaches to social science measurement, including the all-important route-maps that show us how to get there." - Roger Jowell, City University "In this wide-ranging collection of chapters, written by acknowledged experts in their fields, Outhwaite and Turner have brought together material in one volume which will provide an extremely important platform for consideration of the full range of contemporary analytical and methodological issues." - Charles Crothers, Auckland University of Technology This is a jewel among methods Handbooks, bringing together a formidable collection of international contributors to comment on every aspect of the various central issues, complications and controversies in the core methodological traditions. It is designed to meet the needs of those disciplinary and nondisciplinary problem-oriented social inquirers for a comprehensive overview of the methodological literature. The text is divided into 7 sections: Overviews of methodological approaches in the social sciences Cases, comparisons and theory Quantification and experiment Rationality, complexity and collectivity Interpretation, critique and postmodernity Discourse construction Engagement. Edited by two leading figures in the field, the Handbook is a landmark work in the field of research methods. More than just a ′cookbook′ that teaches readers how to master techniques, it will give social scientists in all disciplines an appreciation for the full range of methodological debates today, from the quantitative to the qualitative, giving them deeper and sharpen insights into their own research questions. It will generate debate, solutions and a series of questions for researchers to exploit and develop in their research and teaching.

Handbook of Structural Equation Modeling

Handbook of Structural Equation Modeling PDF Author: Rick H. Hoyle
Publisher: Guilford Publications
ISBN: 1462544649
Category : Business & Economics
Languages : en
Pages : 801
Book Description
"This accessible volume presents both the mechanics of structural equation modeling (SEM) and specific SEM strategies and applications. The editor, along with an international group of contributors, and editorial advisory board are leading methodologists who have organized the book to move from simpler material to more statistically complex modeling approaches. Sections cover the foundations of SEM; statistical underpinnings, from assumptions to model modifications; steps in implementation, from data preparation through writing the SEM report; and basic and advanced applications, including new and emerging topics in SEM. Each chapter provides conceptually oriented descriptions, fully explicated analyses, and engaging examples that reveal modeling possibilities for use with readers' data. Many of the chapters also include access to data and syntax files at the companion website, allowing readers to try their hands at reproducing the authors' results"--

Latent Variable Modeling with R

Latent Variable Modeling with R PDF Author: W. Holmes Finch
Publisher: Routledge
ISBN: 1317970756
Category : Psychology
Languages : en
Pages : 340
Book Description
This book demonstrates how to conduct latent variable modeling (LVM) in R by highlighting the features of each model, their specialized uses, examples, sample code and output, and an interpretation of the results. Each chapter features a detailed example including the analysis of the data using R, the relevant theory, the assumptions underlying the model, and other statistical details to help readers better understand the models and interpret the results. Every R command necessary for conducting the analyses is described along with the resulting output which provides readers with a template to follow when they apply the methods to their own data. The basic information pertinent to each model, the newest developments in these areas, and the relevant R code to use them are reviewed. Each chapter also features an introduction, summary, and suggested readings. A glossary of the text’s boldfaced key terms and key R commands serve as helpful resources. The book is accompanied by a website with exercises, an answer key, and the in-text example data sets. Latent Variable Modeling with R: -Provides some examples that use messy data providing a more realistic situation readers will encounter with their own data. -Reviews a wide range of LVMs including factor analysis, structural equation modeling, item response theory, and mixture models and advanced topics such as fitting nonlinear structural equation models, nonparametric item response theory models, and mixture regression models. -Demonstrates how data simulation can help researchers better understand statistical methods and assist in selecting the necessary sample size prior to collecting data. -www.routledge.com/9780415832458 provides exercises that apply the models along with annotated R output answer keys and the data that corresponds to the in-text examples so readers can replicate the results and check their work. The book opens with basic instructions in how to use R to read data, download functions, and conduct basic analyses. From there, each chapter is dedicated to a different latent variable model including exploratory and confirmatory factor analysis (CFA), structural equation modeling (SEM), multiple groups CFA/SEM, least squares estimation, growth curve models, mixture models, item response theory (both dichotomous and polytomous items), differential item functioning (DIF), and correspondance analysis. The book concludes with a discussion of how data simulation can be used to better understand the workings of a statistical method and assist researchers in deciding on the necessary sample size prior to collecting data. A mixture of independently developed R code along with available libraries for simulating latent models in R are provided so readers can use these simulations to analyze data using the methods introduced in the previous chapters. Intended for use in graduate or advanced undergraduate courses in latent variable modeling, factor analysis, structural equation modeling, item response theory, measurement, or multivariate statistics taught in psychology, education, human development, and social and health sciences, researchers in these fields also appreciate this book’s practical approach. The book provides sufficient conceptual background information to serve as a standalone text. Familiarity with basic statistical concepts is assumed but basic knowledge of R is not.

Structural Equation Modeling for Health and Medicine

Structural Equation Modeling for Health and Medicine PDF Author: Douglas D. Gunzler
Publisher: CRC Press
ISBN: 1351329715
Category : Mathematics
Languages : en
Pages : 318
Book Description
Structural equation modeling (SEM) is a very general and flexible multivariate technique that allows relationships among variables to be examined. The roots of SEM are in the social sciences. In writing this textbook, the authors look to make SEM accessible to a wider audience of researchers across many disciplines, addressing issues unique to health and medicine. SEM is often used in practice to model and test hypothesized causal relationships among observed and latent (unobserved) variables, including in analysis across time and groups. It can be viewed as the merging of a conceptual model, path diagram, confirmatory factor analysis, and path analysis. In this textbook the authors also discuss techniques, such as mixture modeling, that expand the capacity of SEM using a combination of both continuous and categorical latent variables. Features: Basic, intermediate, and advanced SEM topics Detailed applications, particularly relevant for health and medical scientists Topics and examples that are pertinent to both new and experienced SEM researchers Substantive issues in health and medicine in the context of SEM Both methodological and applied examples Numerous figures and diagrams to illustrate the examples As SEM experts situated among clinicians and multidisciplinary researchers in medical settings, the authors provide a broad, current, on the ground understanding of the issues faced by clinical and health services researchers and decision scientists. This book gives health and medical researchers the tools to apply SEM approaches to study complex relationships between clinical measurements, individual and community-level characteristics, and patient-reported scales.

A Beginner's Guide to Structural Equation Modeling

A Beginner's Guide to Structural Equation Modeling PDF Author: Randall E. Schumacker
Publisher: Routledge
ISBN: 1136968555
Category : Psychology
Languages : en
Pages : 532
Book Description
This best-seller introduces readers to structural equation modeling (SEM) so they can conduct their own analysis and critique related research. Noted for its accessible, applied approach, chapters cover basic concepts and practices and computer input/output from the free student version of Lisrel 8.8 in the examples. Each chapter features an outline, key concepts, a summary, numerous examples from a variety of disciplines, tables, and figures, including path diagrams, to assist with conceptual understanding. The book first reviews the basics of SEM, data entry/editing, and correlation. Next the authors highlight the basic steps of SEM: model specification, identification, estimation, testing, and modification, followed by issues related to model fit and power and sample size. Chapters 6 through 10 follow the steps of modeling using regression, path, confirmatory factor, and structural equation models. Next readers find a chapter on reporting SEM research including a checklist to guide decision-making, followed by one on model validation. Chapters 13 through 16 provide examples of various SEM model applications. The book concludes with the matrix approach to SEM using examples from previous chapters. Highlights of the new edition include: A website with raw data sets for the book's examples and exercises so they can be used with any SEM program, all of the book's exercises, hotlinks to related websites, and answers to all of the exercises for Instructor’s only New troubleshooting tips on how to address the most frequently encountered problems Examples now reference the free student version of Lisrel 8.8 Expanded coverage of advanced models with more on multiple-group, multi-level, & mixture modeling (Chs. 13 & 15), second-order and dynamic factor models (Ch. 14), and Monte Carlo methods (Ch. 16) Increased coverage of sample size and power (Ch. 5) and reporting research (Ch. 11) New journal article references help readers better understand published research (Chs. 13 – 17) and 25 % new exercises with answers to half in the book for student review. Designed for introductory graduate level courses in structural equation modeling or factor analysis taught in psychology, education, business, and the social and healthcare sciences, this practical book also appeals to researchers in these disciplines. An understanding of correlation is assumed. To access the website visit the book page or the Textbook Resource page at http://www.psypress.com/textbook-resources/ for more details.