**Author**: QUAN-FANG WANG

**Publisher:**Lambert Academic Publishing

**ISBN:**3846554642

**Category :**Mathematics

**Languages :**en

**Pages :**216

Skip to content
## Bungei Journalism

# PRACTICAL APPLICATION O OPTIMAL CONTROL THEORY PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. **Download PRACTICAL APPLICATION O OPTIMAL CONTROL THEORY PDF full book**. Access full book title **PRACTICAL APPLICATION O OPTIMAL CONTROL THEORY** by QUAN-FANG WANG. Download full books in PDF and EPUB format.
## PRACTICAL APPLICATION O OPTIMAL CONTROL THEORY

**Author**: QUAN-FANG WANG

**Publisher:** Lambert Academic Publishing

**ISBN:** 3846554642

**Category : **Mathematics

**Languages : **en

**Pages : **216

**Book Description**

## PRACTICAL APPLICATION O OPTIMAL CONTROL THEORY

**Author**: QUAN-FANG WANG

**Publisher:** Lambert Academic Publishing

**ISBN:** 3846554642

**Category : **Mathematics

**Languages : **en

**Pages : **216

**Book Description**

## An Application of Time-optimal Control Theory to Launch Vehicle Regulation

**Author**: Smith. F. B.

**Publisher:**

**ISBN:**

**Category : **Time

**Languages : **en

**Pages : **22

**Book Description**

## Counterexamples in Optimal Control Theory

**Author**: Semen Ya. Serovaiskii

**Publisher:** Walter de Gruyter

**ISBN:** 3110915537

**Category : **Mathematics

**Languages : **en

**Pages : **182

**Book Description**

This monograph deals with cases where optimal control either does not exist or is not unique, cases where optimality conditions are insufficient of degenerate, or where extremum problems in the sense of Tikhonov and Hadamard are ill-posed, and other situations. A formal application of classical optimisation methods in such cases either leads to wrong results or has no effect. The detailed analysis of these examples should provide a better understanding of the modern theory of optimal control and the practical difficulties of solving extremum problems.

## Applied Optimal Control Theory of Distributed Systems

**Author**: K.A. Lurie

**Publisher:** Springer Science & Business Media

**ISBN:** 147579262X

**Category : **Science

**Languages : **en

**Pages : **499

**Book Description**

This book represents an extended and substantially revised version of my earlierbook, Optimal Control in Problems ofMathematical Physics,originally published in Russian in 1975. About 60% of the text has been completely revised and major additions have been included which have produced a practically new text. My aim was to modernize the presentation but also to preserve the original results, some of which are little known to a Western reader. The idea of composites, which is the core of the modern theory of optimization, was initiated in the early seventies. The reader will find here its implementation in the problem of optimal conductivity distribution in an MHD-generatorchannel flow.Sincethen it has emergedinto an extensive theory which is undergoing a continuous development. The book does not pretend to be a textbook, neither does it offer a systematic presentation of the theory. Rather, it reflects a concept which I consider as fundamental in the modern approach to optimization of dis tributed systems. Bibliographical notes,though extensive, do not pretend to be exhaustive as well. My thanks are due to ProfessorJean-Louis Armand and ProfessorWolf Stadler whose friendly assistance in translating and polishing the text was so valuable. I am indebted to Mrs. Kathleen Durand and Mrs. Colleen Lewis for the hard job of typing large portions of the manuscript.

## Optimal Control of Partial Differential Equations II: Theory and Applications

**Author**: K.-H. Hoffmann

**Publisher:** Birkhäuser

**ISBN:** 3034876270

**Category : **Science

**Languages : **en

**Pages : **227

**Book Description**

This volume contains the contributions of participants of the conference "Optimal Control of Partial Differential Equations" which, under the chairmanship of the editors, took place at the Mathematisches Forschungsinstitut Oberwolfach from May 18 to May 24, 1986. The great variety of topics covered by the contributions strongly indicates that also in the future it will be impossible to develop a unifying control theory of partial differential equations. On the other hand, there is a strong tendency to treat prob lems which are directly connected to practical applications. So this volume contains real-world applications like optimal cooling laws for the production of rolled steel or concrete solutions for the problem of optimal shape design in mechanics and hydrody namics. Another main topic is the construction of numerical methods. This includes applications of the finite element method as well as of Quasi-Newton-methods to con strained and unconstrained control problems. Also, very complex problems arising in the theory of free boundary value problems are treated. ]~inally, some contribu tions show how practical problems stimulate the further development of the theory; in particular, this is the case for fields like suboptimal control, necessary optimality conditions and sensitivity analysis. As usual, the lectures and stimulating discussions took place in the pleasant at mosphere of the Mathematisches Forschungsinstitut Oberwolfach. Special thanks of the participants are returned to the Director as well as to the staff of the institute.

## Primer on Optimal Control Theory

**Author**: Jason L. Speyer

**Publisher:** SIAM

**ISBN:** 0898718562

**Category : **Control theory

**Languages : **en

**Pages : **307

**Book Description**

The performance of a process -- for example, how an aircraft consumes fuel -- can be enhanced when the most effective controls and operating points for the process are determined. This holds true for many physical, economic, biomedical, manufacturing, and engineering processes whose behavior can often be influenced by altering certain parameters or controls to optimize some desired property or output.

## Control Applications of Nonlinear Programming and Optimization 1989

**Author**: H.B. Siguerdidjane

**Publisher:** Elsevier

**ISBN:** 1483298140

**Category : **Technology & Engineering

**Languages : **en

**Pages : **134

**Book Description**

These Proceedings provide valuable information on the exchange of ideas between scientists who apply nonlinear programming and optimization to real world control problems and those who develop new methods, algorithms and software. The papers deal with windshear problems, optimization of aircraft and spacecraft trajectories, optimal control for robots, the optimization of urban traffic control, general mechanical systems, multilevel inventory systems and robust control.

## Geometric Optimal Control

**Author**: Heinz Schättler

**Publisher:** Springer Science & Business Media

**ISBN:** 1461438349

**Category : **Mathematics

**Languages : **en

**Pages : **640

**Book Description**

This book gives a comprehensive treatment of the fundamental necessary and sufficient conditions for optimality for finite-dimensional, deterministic, optimal control problems. The emphasis is on the geometric aspects of the theory and on illustrating how these methods can be used to solve optimal control problems. It provides tools and techniques that go well beyond standard procedures and can be used to obtain a full understanding of the global structure of solutions for the underlying problem. The text includes a large number and variety of fully worked out examples that range from the classical problem of minimum surfaces of revolution to cancer treatment for novel therapy approaches. All these examples, in one way or the other, illustrate the power of geometric techniques and methods. The versatile text contains material on different levels ranging from the introductory and elementary to the advanced. Parts of the text can be viewed as a comprehensive textbook for both advanced undergraduate and all level graduate courses on optimal control in both mathematics and engineering departments. The text moves smoothly from the more introductory topics to those parts that are in a monograph style were advanced topics are presented. While the presentation is mathematically rigorous, it is carried out in a tutorial style that makes the text accessible to a wide audience of researchers and students from various fields, including the mathematical sciences and engineering. Heinz Schättler is an Associate Professor at Washington University in St. Louis in the Department of Electrical and Systems Engineering, Urszula Ledzewicz is a Distinguished Research Professor at Southern Illinois University Edwardsville in the Department of Mathematics and Statistics.

## Optimal Control Theory with Applications in Economics

**Author**: Thomas A. Weber

**Publisher:** MIT Press

**ISBN:** 0262015730

**Category : **Business & Economics

**Languages : **en

**Pages : **387

**Book Description**

A rigorous introduction to optimal control theory, with an emphasis on applications in economics. This book bridges optimal control theory and economics, discussing ordinary differential equations, optimal control, game theory, and mechanism design in one volume. Technically rigorous and largely self-contained, it provides an introduction to the use of optimal control theory for deterministic continuous-time systems in economics. The theory of ordinary differential equations (ODEs) is the backbone of the theory developed in the book, and chapter 2 offers a detailed review of basic concepts in the theory of ODEs, including the solution of systems of linear ODEs, state-space analysis, potential functions, and stability analysis. Following this, the book covers the main results of optimal control theory, in particular necessary and sufficient optimality conditions; game theory, with an emphasis on differential games; and the application of control-theoretic concepts to the design of economic mechanisms. Appendixes provide a mathematical review and full solutions to all end-of-chapter problems. The material is presented at three levels: single-person decision making; games, in which a group of decision makers interact strategically; and mechanism design, which is concerned with a designer's creation of an environment in which players interact to maximize the designer's objective. The book focuses on applications; the problems are an integral part of the text. It is intended for use as a textbook or reference for graduate students, teachers, and researchers interested in applications of control theory beyond its classical use in economic growth. The book will also appeal to readers interested in a modeling approach to certain practical problems involving dynamic continuous-time models.

## Global Methods in Optimal Control Theory

**Author**: Vadim Krotov

**Publisher:** CRC Press

**ISBN:** 9780824793296

**Category : **Mathematics

**Languages : **en

**Pages : **410

**Book Description**

This work describes all basic equaitons and inequalities that form the necessary and sufficient optimality conditions of variational calculus and the theory of optimal control. Subjects addressed include developments in the investigation of optimality conditions, new classes of solutions, analytical and computation methods, and applications.

eBook Journalism in PDF, ePub, Mobi and Kindle

This monograph deals with cases where optimal control either does not exist or is not unique, cases where optimality conditions are insufficient of degenerate, or where extremum problems in the sense of Tikhonov and Hadamard are ill-posed, and other situations. A formal application of classical optimisation methods in such cases either leads to wrong results or has no effect. The detailed analysis of these examples should provide a better understanding of the modern theory of optimal control and the practical difficulties of solving extremum problems.

This book represents an extended and substantially revised version of my earlierbook, Optimal Control in Problems ofMathematical Physics,originally published in Russian in 1975. About 60% of the text has been completely revised and major additions have been included which have produced a practically new text. My aim was to modernize the presentation but also to preserve the original results, some of which are little known to a Western reader. The idea of composites, which is the core of the modern theory of optimization, was initiated in the early seventies. The reader will find here its implementation in the problem of optimal conductivity distribution in an MHD-generatorchannel flow.Sincethen it has emergedinto an extensive theory which is undergoing a continuous development. The book does not pretend to be a textbook, neither does it offer a systematic presentation of the theory. Rather, it reflects a concept which I consider as fundamental in the modern approach to optimization of dis tributed systems. Bibliographical notes,though extensive, do not pretend to be exhaustive as well. My thanks are due to ProfessorJean-Louis Armand and ProfessorWolf Stadler whose friendly assistance in translating and polishing the text was so valuable. I am indebted to Mrs. Kathleen Durand and Mrs. Colleen Lewis for the hard job of typing large portions of the manuscript.

This volume contains the contributions of participants of the conference "Optimal Control of Partial Differential Equations" which, under the chairmanship of the editors, took place at the Mathematisches Forschungsinstitut Oberwolfach from May 18 to May 24, 1986. The great variety of topics covered by the contributions strongly indicates that also in the future it will be impossible to develop a unifying control theory of partial differential equations. On the other hand, there is a strong tendency to treat prob lems which are directly connected to practical applications. So this volume contains real-world applications like optimal cooling laws for the production of rolled steel or concrete solutions for the problem of optimal shape design in mechanics and hydrody namics. Another main topic is the construction of numerical methods. This includes applications of the finite element method as well as of Quasi-Newton-methods to con strained and unconstrained control problems. Also, very complex problems arising in the theory of free boundary value problems are treated. ]~inally, some contribu tions show how practical problems stimulate the further development of the theory; in particular, this is the case for fields like suboptimal control, necessary optimality conditions and sensitivity analysis. As usual, the lectures and stimulating discussions took place in the pleasant at mosphere of the Mathematisches Forschungsinstitut Oberwolfach. Special thanks of the participants are returned to the Director as well as to the staff of the institute.

The performance of a process -- for example, how an aircraft consumes fuel -- can be enhanced when the most effective controls and operating points for the process are determined. This holds true for many physical, economic, biomedical, manufacturing, and engineering processes whose behavior can often be influenced by altering certain parameters or controls to optimize some desired property or output.

These Proceedings provide valuable information on the exchange of ideas between scientists who apply nonlinear programming and optimization to real world control problems and those who develop new methods, algorithms and software. The papers deal with windshear problems, optimization of aircraft and spacecraft trajectories, optimal control for robots, the optimization of urban traffic control, general mechanical systems, multilevel inventory systems and robust control.

This book gives a comprehensive treatment of the fundamental necessary and sufficient conditions for optimality for finite-dimensional, deterministic, optimal control problems. The emphasis is on the geometric aspects of the theory and on illustrating how these methods can be used to solve optimal control problems. It provides tools and techniques that go well beyond standard procedures and can be used to obtain a full understanding of the global structure of solutions for the underlying problem. The text includes a large number and variety of fully worked out examples that range from the classical problem of minimum surfaces of revolution to cancer treatment for novel therapy approaches. All these examples, in one way or the other, illustrate the power of geometric techniques and methods. The versatile text contains material on different levels ranging from the introductory and elementary to the advanced. Parts of the text can be viewed as a comprehensive textbook for both advanced undergraduate and all level graduate courses on optimal control in both mathematics and engineering departments. The text moves smoothly from the more introductory topics to those parts that are in a monograph style were advanced topics are presented. While the presentation is mathematically rigorous, it is carried out in a tutorial style that makes the text accessible to a wide audience of researchers and students from various fields, including the mathematical sciences and engineering. Heinz Schättler is an Associate Professor at Washington University in St. Louis in the Department of Electrical and Systems Engineering, Urszula Ledzewicz is a Distinguished Research Professor at Southern Illinois University Edwardsville in the Department of Mathematics and Statistics.

A rigorous introduction to optimal control theory, with an emphasis on applications in economics. This book bridges optimal control theory and economics, discussing ordinary differential equations, optimal control, game theory, and mechanism design in one volume. Technically rigorous and largely self-contained, it provides an introduction to the use of optimal control theory for deterministic continuous-time systems in economics. The theory of ordinary differential equations (ODEs) is the backbone of the theory developed in the book, and chapter 2 offers a detailed review of basic concepts in the theory of ODEs, including the solution of systems of linear ODEs, state-space analysis, potential functions, and stability analysis. Following this, the book covers the main results of optimal control theory, in particular necessary and sufficient optimality conditions; game theory, with an emphasis on differential games; and the application of control-theoretic concepts to the design of economic mechanisms. Appendixes provide a mathematical review and full solutions to all end-of-chapter problems. The material is presented at three levels: single-person decision making; games, in which a group of decision makers interact strategically; and mechanism design, which is concerned with a designer's creation of an environment in which players interact to maximize the designer's objective. The book focuses on applications; the problems are an integral part of the text. It is intended for use as a textbook or reference for graduate students, teachers, and researchers interested in applications of control theory beyond its classical use in economic growth. The book will also appeal to readers interested in a modeling approach to certain practical problems involving dynamic continuous-time models.

This work describes all basic equaitons and inequalities that form the necessary and sufficient optimality conditions of variational calculus and the theory of optimal control. Subjects addressed include developments in the investigation of optimality conditions, new classes of solutions, analytical and computation methods, and applications.