**Author**: David G. Hull

**Publisher:**Springer Science & Business Media

**ISBN:**1475741804

**Category :**Technology & Engineering

**Languages :**en

**Pages :**384

Skip to content
## Bungei Journalism

# Optimal Control Theory for Applications PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. **Download Optimal Control Theory for Applications PDF full book**. Access full book title **Optimal Control Theory for Applications** by David G. Hull. Download full books in PDF and EPUB format.
## Optimal Control Theory for Applications

**Author**: David G. Hull

**Publisher:** Springer Science & Business Media

**ISBN:** 1475741804

**Category : **Technology & Engineering

**Languages : **en

**Pages : **384

**Book Description**

The published material represents the outgrowth of teaching analytical optimization to aerospace engineering graduate students. To make the material available to the widest audience, the prerequisites are limited to calculus and differential equations. It is also a book about the mathematical aspects of optimal control theory. It was developed in an engineering environment from material learned by the author while applying it to the solution of engineering problems. One goal of the book is to help engineering graduate students learn the fundamentals which are needed to apply the methods to engineering problems. The examples are from geometry and elementary dynamical systems so that they can be understood by all engineering students. Another goal of this text is to unify optimization by using the differential of calculus to create the Taylor series expansions needed to derive the optimality conditions of optimal control theory.

## Optimal Control Theory for Applications

**Author**: David G. Hull

**Publisher:** Springer Science & Business Media

**ISBN:** 1475741804

**Category : **Technology & Engineering

**Languages : **en

**Pages : **384

**Book Description**

The published material represents the outgrowth of teaching analytical optimization to aerospace engineering graduate students. To make the material available to the widest audience, the prerequisites are limited to calculus and differential equations. It is also a book about the mathematical aspects of optimal control theory. It was developed in an engineering environment from material learned by the author while applying it to the solution of engineering problems. One goal of the book is to help engineering graduate students learn the fundamentals which are needed to apply the methods to engineering problems. The examples are from geometry and elementary dynamical systems so that they can be understood by all engineering students. Another goal of this text is to unify optimization by using the differential of calculus to create the Taylor series expansions needed to derive the optimality conditions of optimal control theory.

## Optimal Control Theory for Applications

**Author**: David G. Hull

**Publisher:** Springer Science & Business Media

**ISBN:** 9780387400709

**Category : **Technology & Engineering

**Languages : **en

**Pages : **410

**Book Description**

The published material represents the outgrowth of teaching analytical optimization to aerospace engineering graduate students. To make the material available to the widest audience, the prerequisites are limited to calculus and differential equations. It is also a book about the mathematical aspects of optimal control theory. It was developed in an engineering environment from material learned by the author while applying it to the solution of engineering problems. One goal of the book is to help engineering graduate students learn the fundamentals which are needed to apply the methods to engineering problems. The examples are from geometry and elementary dynamical systems so that they can be understood by all engineering students. Another goal of this text is to unify optimization by using the differential of calculus to create the Taylor series expansions needed to derive the optimality conditions of optimal control theory.

## Optimal Control Theory with Applications in Economics

**Author**: Thomas A. Weber

**Publisher:** MIT Press

**ISBN:** 0262015730

**Category : **Business & Economics

**Languages : **en

**Pages : **387

**Book Description**

A rigorous introduction to optimal control theory, with an emphasis on applications in economics. This book bridges optimal control theory and economics, discussing ordinary differential equations, optimal control, game theory, and mechanism design in one volume. Technically rigorous and largely self-contained, it provides an introduction to the use of optimal control theory for deterministic continuous-time systems in economics. The theory of ordinary differential equations (ODEs) is the backbone of the theory developed in the book, and chapter 2 offers a detailed review of basic concepts in the theory of ODEs, including the solution of systems of linear ODEs, state-space analysis, potential functions, and stability analysis. Following this, the book covers the main results of optimal control theory, in particular necessary and sufficient optimality conditions; game theory, with an emphasis on differential games; and the application of control-theoretic concepts to the design of economic mechanisms. Appendixes provide a mathematical review and full solutions to all end-of-chapter problems. The material is presented at three levels: single-person decision making; games, in which a group of decision makers interact strategically; and mechanism design, which is concerned with a designer's creation of an environment in which players interact to maximize the designer's objective. The book focuses on applications; the problems are an integral part of the text. It is intended for use as a textbook or reference for graduate students, teachers, and researchers interested in applications of control theory beyond its classical use in economic growth. The book will also appeal to readers interested in a modeling approach to certain practical problems involving dynamic continuous-time models.

## Optimal Control Theory

**Author**: Zhongjing Ma

**Publisher:** Springer Nature

**ISBN:** 9813362928

**Category : **Automatic control

**Languages : **en

**Pages : **355

**Book Description**

This book focuses on how to implement optimal control problems via the variational method. It studies how to implement the extrema of functional by applying the variational method and covers the extrema of functional with different boundary conditions, involving multiple functions and with certain constraints etc. It gives the necessary and sufficient condition for the (continuous-time) optimal control solution via the variational method, solves the optimal control problems with different boundary conditions, analyzes the linear quadratic regulator & tracking problems respectively in detail, and provides the solution of optimal control problems with state constraints by applying the Pontryagin's minimum principle which is developed based upon the calculus of variations. And the developed results are applied to implement several classes of popular optimal control problems and say minimum-time, minimum-fuel and minimum-energy problems and so on. As another key branch of optimal control methods, it also presents how to solve the optimal control problems via dynamic programming and discusses the relationship between the variational method and dynamic programming for comparison. Concerning the system involving individual agents, it is also worth to study how to implement the decentralized solution for the underlying optimal control problems in the framework of differential games. The equilibrium is implemented by applying both Pontryagin's minimum principle and dynamic programming. The book also analyzes the discrete-time version for all the above materials as well since the discrete-time optimal control problems are very popular in many fields.

## Optimal Control

**Author**: Michael Athans

**Publisher:** Courier Corporation

**ISBN:** 0486453286

**Category : **Technology & Engineering

**Languages : **en

**Pages : **900

**Book Description**

Geared toward advanced undergraduate and graduate engineering students, this text introduces the theory and applications of optimal control. It serves as a bridge to the technical literature, enabling students to evaluate the implications of theoretical control work, and to judge the merits of papers on the subject. Rather than presenting an exhaustive treatise, Optimal Control offers a detailed introduction that fosters careful thinking and disciplined intuition. It develops the basic mathematical background, with a coherent formulation of the control problem and discussions of the necessary conditions for optimality based on the maximum principle of Pontryagin. In-depth examinations cover applications of the theory to minimum time, minimum fuel, and to quadratic criteria problems. The structure, properties, and engineering realizations of several optimal feedback control systems also receive attention. Special features include numerous specific problems, carried through to engineering realization in block diagram form. The text treats almost all current examples of control problems that permit analytic solutions, and its unified approach makes frequent use of geometric ideas to encourage students' intuition.

## Applied Optimal Control Theory of Distributed Systems

**Author**: K.A. Lurie

**Publisher:** Springer Science & Business Media

**ISBN:** 147579262X

**Category : **Science

**Languages : **en

**Pages : **499

**Book Description**

This book represents an extended and substantially revised version of my earlierbook, Optimal Control in Problems ofMathematical Physics,originally published in Russian in 1975. About 60% of the text has been completely revised and major additions have been included which have produced a practically new text. My aim was to modernize the presentation but also to preserve the original results, some of which are little known to a Western reader. The idea of composites, which is the core of the modern theory of optimization, was initiated in the early seventies. The reader will find here its implementation in the problem of optimal conductivity distribution in an MHD-generatorchannel flow.Sincethen it has emergedinto an extensive theory which is undergoing a continuous development. The book does not pretend to be a textbook, neither does it offer a systematic presentation of the theory. Rather, it reflects a concept which I consider as fundamental in the modern approach to optimization of dis tributed systems. Bibliographical notes,though extensive, do not pretend to be exhaustive as well. My thanks are due to ProfessorJean-Louis Armand and ProfessorWolf Stadler whose friendly assistance in translating and polishing the text was so valuable. I am indebted to Mrs. Kathleen Durand and Mrs. Colleen Lewis for the hard job of typing large portions of the manuscript.

## Optimal Control Theory and its Applications

**Author**: B. J. Kirby

**Publisher:** Springer Science & Business Media

**ISBN:** 3662015692

**Category : **Mathematics

**Languages : **en

**Pages : **427

**Book Description**

This work (in two parts), Lecture Notes in Economics and Mathe matical Systems, Volume 105 and 106, constitutes the Proceedings of the Fourteenth Biennual Seminar of the Canadian Mathematical Congress, which was held from August 12 to August 25, 1973 at the University of Western Ontario, London, Ontario. The Canadian Mathematical Congr~ss has held Biennual Seminars since 1947, and these have covered a wide range of topics. The Seminar reported in this publication was concerned with "Optimal Control Theory and its Applications", a subject chosen for its active ~rowth and its wide implications for other fields. Both these aspects are exemplified in these Proceedings. Some lectures provided excellent surveys of particular fields whereas others concentrated on the presentation of new results. There were six distinguished Principal Lecturers: H.T. Banks, A.R. Dobell, H. Halkin, J.L. Lions, R.M. Thrall and W.M. Wonham, all of whom gave five to ten lectures during the two weeks of the Seminar. Except for Dr. Dobell's, these will all be found in Volume 105. Besides the Principal Lecturers there were three Guest Lecturers: M.C. Delfour, V. Jurdjevic and S.P. Sethi, who presented substantial bodies of material in two or three lectures and which are included in Volnme 106. Many of the participants also spoke and reports of most of these have also been included (Volume 106).

## Application of Optimal Control Theory to Enhanced Oil Recovery

**Author**: W. Fred Ramirez

**Publisher:** Elsevier

**ISBN:** 9780080868790

**Category : **Technology & Engineering

**Languages : **en

**Pages : **242

**Book Description**

In recent years, enhanced oil recovery techniques have received much attention in the oil industry. Enhanced oil recovery methods can be divided into three major categories: thermal processes which include steam flooding, steam stimulation, and in-situ combustion; chemical processes which include surfactant-polymer injection, polymer flooding, and caustic flooding; and miscible displacement processes which include miscible hydrocarbon displacement, carbon dioxide injection of large amounts of rather expensive fluids into oil bearing reservoir formations. Commercial application of any enhanced oil recovery process relies upon economic projections that show a decent return on the investment. Because of high chemical costs, it is important to optimize enhanced oil recovery processes to provide the greatest recovery at the lowest chemical injection cost. The aim of this book is to develop an optimal control theory for the determination of operating strategies that maximize the economic attractiveness of enhanced oil recovery processes. The determination of optimal control histories or operating strategies is one of the key elements in the successful usage of new enhanced oil recovery techniques. The information contained in the book will therefore be both interesting and useful to all those working in petroleum engineering, petroleum management and chemical engineering.

## PRACTICAL APPLICATION O OPTIMAL CONTROL THEORY

**Author**: QUAN-FANG WANG

**Publisher:** Lambert Academic Publishing

**ISBN:** 3846554642

**Category : **Mathematics

**Languages : **en

**Pages : **216

**Book Description**

## Optimization and Optimal Control

**Author**: Altannar Chinchuluun

**Publisher:** Springer Science & Business Media

**ISBN:** 0387894950

**Category : **Mathematics

**Languages : **en

**Pages : **508

**Book Description**

Optimization and optimal control are the main tools in decision making. Because of their numerous applications in various disciplines, research in these areas is accelerating at a rapid pace. â€śOptimization and Optimal Control: Theory and Applicationsâ€ť brings together the latest developments in these areas of research as well as presents applications of these results to a wide range of real-world problems. This volume can serve as a useful resource for researchers, practitioners, and advanced graduate students of mathematics and engineering working in research areas where results in optimization and optimal control can be applied.

eBook Journalism in PDF, ePub, Mobi and Kindle

The published material represents the outgrowth of teaching analytical optimization to aerospace engineering graduate students. To make the material available to the widest audience, the prerequisites are limited to calculus and differential equations. It is also a book about the mathematical aspects of optimal control theory. It was developed in an engineering environment from material learned by the author while applying it to the solution of engineering problems. One goal of the book is to help engineering graduate students learn the fundamentals which are needed to apply the methods to engineering problems. The examples are from geometry and elementary dynamical systems so that they can be understood by all engineering students. Another goal of this text is to unify optimization by using the differential of calculus to create the Taylor series expansions needed to derive the optimality conditions of optimal control theory.

The published material represents the outgrowth of teaching analytical optimization to aerospace engineering graduate students. To make the material available to the widest audience, the prerequisites are limited to calculus and differential equations. It is also a book about the mathematical aspects of optimal control theory. It was developed in an engineering environment from material learned by the author while applying it to the solution of engineering problems. One goal of the book is to help engineering graduate students learn the fundamentals which are needed to apply the methods to engineering problems. The examples are from geometry and elementary dynamical systems so that they can be understood by all engineering students. Another goal of this text is to unify optimization by using the differential of calculus to create the Taylor series expansions needed to derive the optimality conditions of optimal control theory.

The published material represents the outgrowth of teaching analytical optimization to aerospace engineering graduate students. To make the material available to the widest audience, the prerequisites are limited to calculus and differential equations. It is also a book about the mathematical aspects of optimal control theory. It was developed in an engineering environment from material learned by the author while applying it to the solution of engineering problems. One goal of the book is to help engineering graduate students learn the fundamentals which are needed to apply the methods to engineering problems. The examples are from geometry and elementary dynamical systems so that they can be understood by all engineering students. Another goal of this text is to unify optimization by using the differential of calculus to create the Taylor series expansions needed to derive the optimality conditions of optimal control theory.

A rigorous introduction to optimal control theory, with an emphasis on applications in economics. This book bridges optimal control theory and economics, discussing ordinary differential equations, optimal control, game theory, and mechanism design in one volume. Technically rigorous and largely self-contained, it provides an introduction to the use of optimal control theory for deterministic continuous-time systems in economics. The theory of ordinary differential equations (ODEs) is the backbone of the theory developed in the book, and chapter 2 offers a detailed review of basic concepts in the theory of ODEs, including the solution of systems of linear ODEs, state-space analysis, potential functions, and stability analysis. Following this, the book covers the main results of optimal control theory, in particular necessary and sufficient optimality conditions; game theory, with an emphasis on differential games; and the application of control-theoretic concepts to the design of economic mechanisms. Appendixes provide a mathematical review and full solutions to all end-of-chapter problems. The material is presented at three levels: single-person decision making; games, in which a group of decision makers interact strategically; and mechanism design, which is concerned with a designer's creation of an environment in which players interact to maximize the designer's objective. The book focuses on applications; the problems are an integral part of the text. It is intended for use as a textbook or reference for graduate students, teachers, and researchers interested in applications of control theory beyond its classical use in economic growth. The book will also appeal to readers interested in a modeling approach to certain practical problems involving dynamic continuous-time models.

This book focuses on how to implement optimal control problems via the variational method. It studies how to implement the extrema of functional by applying the variational method and covers the extrema of functional with different boundary conditions, involving multiple functions and with certain constraints etc. It gives the necessary and sufficient condition for the (continuous-time) optimal control solution via the variational method, solves the optimal control problems with different boundary conditions, analyzes the linear quadratic regulator & tracking problems respectively in detail, and provides the solution of optimal control problems with state constraints by applying the Pontryagin's minimum principle which is developed based upon the calculus of variations. And the developed results are applied to implement several classes of popular optimal control problems and say minimum-time, minimum-fuel and minimum-energy problems and so on. As another key branch of optimal control methods, it also presents how to solve the optimal control problems via dynamic programming and discusses the relationship between the variational method and dynamic programming for comparison. Concerning the system involving individual agents, it is also worth to study how to implement the decentralized solution for the underlying optimal control problems in the framework of differential games. The equilibrium is implemented by applying both Pontryagin's minimum principle and dynamic programming. The book also analyzes the discrete-time version for all the above materials as well since the discrete-time optimal control problems are very popular in many fields.

Geared toward advanced undergraduate and graduate engineering students, this text introduces the theory and applications of optimal control. It serves as a bridge to the technical literature, enabling students to evaluate the implications of theoretical control work, and to judge the merits of papers on the subject. Rather than presenting an exhaustive treatise, Optimal Control offers a detailed introduction that fosters careful thinking and disciplined intuition. It develops the basic mathematical background, with a coherent formulation of the control problem and discussions of the necessary conditions for optimality based on the maximum principle of Pontryagin. In-depth examinations cover applications of the theory to minimum time, minimum fuel, and to quadratic criteria problems. The structure, properties, and engineering realizations of several optimal feedback control systems also receive attention. Special features include numerous specific problems, carried through to engineering realization in block diagram form. The text treats almost all current examples of control problems that permit analytic solutions, and its unified approach makes frequent use of geometric ideas to encourage students' intuition.

This book represents an extended and substantially revised version of my earlierbook, Optimal Control in Problems ofMathematical Physics,originally published in Russian in 1975. About 60% of the text has been completely revised and major additions have been included which have produced a practically new text. My aim was to modernize the presentation but also to preserve the original results, some of which are little known to a Western reader. The idea of composites, which is the core of the modern theory of optimization, was initiated in the early seventies. The reader will find here its implementation in the problem of optimal conductivity distribution in an MHD-generatorchannel flow.Sincethen it has emergedinto an extensive theory which is undergoing a continuous development. The book does not pretend to be a textbook, neither does it offer a systematic presentation of the theory. Rather, it reflects a concept which I consider as fundamental in the modern approach to optimization of dis tributed systems. Bibliographical notes,though extensive, do not pretend to be exhaustive as well. My thanks are due to ProfessorJean-Louis Armand and ProfessorWolf Stadler whose friendly assistance in translating and polishing the text was so valuable. I am indebted to Mrs. Kathleen Durand and Mrs. Colleen Lewis for the hard job of typing large portions of the manuscript.

This work (in two parts), Lecture Notes in Economics and Mathe matical Systems, Volume 105 and 106, constitutes the Proceedings of the Fourteenth Biennual Seminar of the Canadian Mathematical Congress, which was held from August 12 to August 25, 1973 at the University of Western Ontario, London, Ontario. The Canadian Mathematical Congr~ss has held Biennual Seminars since 1947, and these have covered a wide range of topics. The Seminar reported in this publication was concerned with "Optimal Control Theory and its Applications", a subject chosen for its active ~rowth and its wide implications for other fields. Both these aspects are exemplified in these Proceedings. Some lectures provided excellent surveys of particular fields whereas others concentrated on the presentation of new results. There were six distinguished Principal Lecturers: H.T. Banks, A.R. Dobell, H. Halkin, J.L. Lions, R.M. Thrall and W.M. Wonham, all of whom gave five to ten lectures during the two weeks of the Seminar. Except for Dr. Dobell's, these will all be found in Volume 105. Besides the Principal Lecturers there were three Guest Lecturers: M.C. Delfour, V. Jurdjevic and S.P. Sethi, who presented substantial bodies of material in two or three lectures and which are included in Volnme 106. Many of the participants also spoke and reports of most of these have also been included (Volume 106).

In recent years, enhanced oil recovery techniques have received much attention in the oil industry. Enhanced oil recovery methods can be divided into three major categories: thermal processes which include steam flooding, steam stimulation, and in-situ combustion; chemical processes which include surfactant-polymer injection, polymer flooding, and caustic flooding; and miscible displacement processes which include miscible hydrocarbon displacement, carbon dioxide injection of large amounts of rather expensive fluids into oil bearing reservoir formations. Commercial application of any enhanced oil recovery process relies upon economic projections that show a decent return on the investment. Because of high chemical costs, it is important to optimize enhanced oil recovery processes to provide the greatest recovery at the lowest chemical injection cost. The aim of this book is to develop an optimal control theory for the determination of operating strategies that maximize the economic attractiveness of enhanced oil recovery processes. The determination of optimal control histories or operating strategies is one of the key elements in the successful usage of new enhanced oil recovery techniques. The information contained in the book will therefore be both interesting and useful to all those working in petroleum engineering, petroleum management and chemical engineering.

Optimization and optimal control are the main tools in decision making. Because of their numerous applications in various disciplines, research in these areas is accelerating at a rapid pace. â€śOptimization and Optimal Control: Theory and Applicationsâ€ť brings together the latest developments in these areas of research as well as presents applications of these results to a wide range of real-world problems. This volume can serve as a useful resource for researchers, practitioners, and advanced graduate students of mathematics and engineering working in research areas where results in optimization and optimal control can be applied.