hp-Finite Element Methods for Singular Perturbations PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download hp-Finite Element Methods for Singular Perturbations PDF full book. Access full book title hp-Finite Element Methods for Singular Perturbations by Jens M. Melenk. Download full books in PDF and EPUB format.

hp-Finite Element Methods for Singular Perturbations

hp-Finite Element Methods for Singular Perturbations PDF Author: Jens M. Melenk
Publisher: Springer
ISBN: 354045781X
Category : Mathematics
Languages : en
Pages : 326
Book Description
Many partial differential equations arising in practice are parameter-dependent problems that are of singularly perturbed type. Prominent examples include plate and shell models for small thickness in solid mechanics, convection-diffusion problems in fluid mechanics, and equations arising in semi-conductor device modelling. Common features of these problems are layers and, in the case of non-smooth geometries, corner singularities. Mesh design principles for the efficient approximation of both features by the hp-version of the finite element method (hp-FEM) are proposed in this volume. For a class of singularly perturbed problems on polygonal domains, robust exponential convergence of the hp-FEM based on these mesh design principles is established rigorously.

hp-Finite Element Methods for Singular Perturbations

hp-Finite Element Methods for Singular Perturbations PDF Author: Jens M. Melenk
Publisher: Springer
ISBN: 354045781X
Category : Mathematics
Languages : en
Pages : 326
Book Description
Many partial differential equations arising in practice are parameter-dependent problems that are of singularly perturbed type. Prominent examples include plate and shell models for small thickness in solid mechanics, convection-diffusion problems in fluid mechanics, and equations arising in semi-conductor device modelling. Common features of these problems are layers and, in the case of non-smooth geometries, corner singularities. Mesh design principles for the efficient approximation of both features by the hp-version of the finite element method (hp-FEM) are proposed in this volume. For a class of singularly perturbed problems on polygonal domains, robust exponential convergence of the hp-FEM based on these mesh design principles is established rigorously.

Advanced Finite Element Methods with Applications

Advanced Finite Element Methods with Applications PDF Author: Thomas Apel
Publisher: Springer
ISBN: 3030142442
Category : Mathematics
Languages : en
Pages : 428
Book Description
Finite element methods are the most popular methods for solving partial differential equations numerically, and despite having a history of more than 50 years, there is still active research on their analysis, application and extension. This book features overview papers and original research articles from participants of the 30th Chemnitz Finite Element Symposium, which itself has a 40-year history. Covering topics including numerical methods for equations with fractional partial derivatives; isogeometric analysis and other novel discretization methods, like space-time finite elements and boundary elements; analysis of a posteriori error estimates and adaptive methods; enhancement of efficient solvers of the resulting systems of equations, discretization methods for partial differential equations on surfaces; and methods adapted to applications in solid and fluid mechanics, it offers readers insights into the latest results.

Computing with hp-ADAPTIVE FINITE ELEMENTS

Computing with hp-ADAPTIVE FINITE ELEMENTS PDF Author: Leszek Demkowicz
Publisher: CRC Press
ISBN: 1420011685
Category : Science
Languages : en
Pages : 398
Book Description
Offering the only existing finite element (FE) codes for Maxwell equations that support hp refinements on irregular meshes, Computing with hp-ADAPTIVE FINITE ELEMENTS: Volume 1. One- and Two-Dimensional Elliptic and Maxwell Problems presents 1D and 2D codes and automatic hp adaptivity. This self-contained source discusses the theory and implementation of hp-adaptive FE methods, focusing on projection-based interpolation and the corresponding hp-adaptive strategy. The book is split into three parts, progressing from simple to more advanced problems. Part I examines the hp elements for the standard 1D model elliptic problem. The author develops the variational formulation and explains the construction of FE basis functions. The book then introduces the 1D code (1Dhp) and automatic hp adaptivity. This first part ends with a study of a 1D wave propagation problem. In Part II, the book proceeds to 2D elliptic problems, discussing two model problems that are slightly beyond standard-level examples: 3D axisymmetric antenna problem for Maxwell equations (example of a complex-valued, indefinite problem) and 2D elasticity (example of an elliptic system). The author concludes with a presentation on infinite elements - one of the possible tools to solve exterior boundary-value problems. Part III focuses on 2D time-harmonic Maxwell equations. The book explains the construction of the hp edge elements and the fundamental de Rham diagram for the whole family of hp discretizations. Next, it explores the differences between the elliptic and Maxwell versions of the 2D code, including automatic hp adaptivity. Finally, the book presents 2D exterior (radiation and scattering) problems and sample solutions using coupled hp finite/infinite elements. In Computing with hp-ADAPTIVE FINITE ELEMENTS, the information provided, including many unpublished details, aids in solving elliptic and Maxwell problems.

Boundary and Interior Layers, Computational and Asymptotic Methods BAIL 2016

Boundary and Interior Layers, Computational and Asymptotic Methods BAIL 2016 PDF Author: Zhongyi Huang
Publisher: Springer
ISBN: 3319672029
Category : Mathematics
Languages : en
Pages : 211
Book Description
This volume collects papers associated with lectures that were presented at the BAIL 2016 conference, which was held from 14 to 19 August 2016 at Beijing Computational Science Research Center and Tsinghua University in Beijing, China. It showcases the variety and quality of current research into numerical and asymptotic methods for theoretical and practical problems whose solutions involve layer phenomena. The BAIL (Boundary And Interior Layers) conferences, held usually in even-numbered years, bring together mathematicians and engineers/physicists whose research involves layer phenomena, with the aim of promoting interaction between these often-separate disciplines. These layers appear as solutions of singularly perturbed differential equations of various types, and are common in physical problems, most notably in fluid dynamics. This book is of interest for current researchers from mathematics, engineering and physics whose work involves the accurate app roximation of solutions of singularly perturbed differential equations; that is, problems whose solutions exhibit boundary and/or interior layers.

Computational Partial Differential Equations Using MATLAB

Computational Partial Differential Equations Using MATLAB PDF Author: Jichun Li
Publisher: CRC Press
ISBN: 1420089056
Category : Mathematics
Languages : en
Pages : 376
Book Description
This textbook introduces several major numerical methods for solving various partial differential equations (PDEs) in science and engineering, including elliptic, parabolic, and hyperbolic equations. It covers traditional techniques that include the classic finite difference method and the finite element method as well as state-of-the-art numerical

Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016

Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016 PDF Author: Marco L. Bittencourt
Publisher: Springer
ISBN: 3319658700
Category : Mathematics
Languages : en
Pages : 700
Book Description
This book features a selection of high-quality papers chosen from the best presentations at the International Conference on Spectral and High-Order Methods (2016), offering an overview of the depth and breadth of the activities within this important research area. The carefully reviewed papers provide a snapshot of the state of the art, while the extensive bibliography helps initiate new research directions.

Anisotropic Hp-Mesh Adaptation Methods

Anisotropic Hp-Mesh Adaptation Methods PDF Author: Vít Dolejší
Publisher: Springer Nature
ISBN: 3031042794
Category : Differential equations, Partial
Languages : en
Pages : 258
Book Description
Mesh adaptation methods can have a profound impact on the numerical solution of partial differential equations. If devised and implemented properly, adaptation significantly reduces the size of the algebraic systems resulting from the discretization, while ensuring that applicable error tolerances are met. In this monograph, drawing from many years of experience, the authors give a comprehensive presentation of metric-based anisotropic hp-mesh adaptation methods. A large part of this monograph is devoted to the derivation of computable interpolation error estimates on simplicial meshes, which take into account the geometry of mesh elements as well as the anisotropic features of the interpolated function. These estimates are then used for the optimization of corresponding finite element spaces in a variety of settings. Both steady and time dependent problems are treated, as well as goal-oriented adaptation. Practical aspects of implementation are also explored, including several algorithms. Many numerical experiments using the discontinuous Galerkin method are presented to illustrate the performance of the adaptive techniques. This monograph is intended for scientists and researchers, including doctoral and master-level students. Portions of the text can also be used as study material for advanced university lectures concerning a posteriori error analysis and mesh adaptation.

Differential Equations and Applications

Differential Equations and Applications PDF Author: Valarmathi Sigamani
Publisher: Springer Nature
ISBN: 9811675465
Category : Differential equations
Languages : en
Pages : 218
Book Description
This book collects select papers presented at the International Conference on Applications of Basic Sciences, held at Tiruchirappalli, Tamil Nadu, India, from 19-21 November 2019. The book discusses topics on singular perturbation problems, differential equations, numerical analysis, fuzzy logics, fuzzy differential equations, and mathematical physics, and their interdisciplinary applications in all areas of basic sciences: mathematics, physics, chemistry, and biology. It will be useful to researchers and scientists in all disciplines of basic sciences. This book will be very useful to know the different scientific approaches for a single physical system.

Numerical Methods for Nonlinear Elliptic Differential Equations

Numerical Methods for Nonlinear Elliptic Differential Equations PDF Author: Klaus Boehmer
Publisher: OUP Oxford
ISBN: 0191574473
Category : Science
Languages : en
Pages : 776
Book Description
Nonlinear elliptic problems play an increasingly important role in mathematics, science and engineering, creating an exciting interplay between the subjects. This is the first and only book to prove in a systematic and unifying way, stability, convergence and computing results for the different numerical methods for nonlinear elliptic problems. The proofs use linearization, compact perturbation of the coercive principal parts, or monotone operator techniques, and approximation theory. Examples are given for linear to fully nonlinear problems (highest derivatives occur nonlinearly) and for the most important space discretization methods: conforming and nonconforming finite element, discontinuous Galerkin, finite difference, wavelet (and, in a volume to follow, spectral and meshfree) methods. A number of specific long open problems are solved here: numerical methods for fully nonlinear elliptic problems, wavelet and meshfree methods for nonlinear problems, and more general nonlinear boundary conditions. We apply it to all these problems and methods, in particular to eigenvalues, monotone operators, quadrature approximations, and Newton methods. Adaptivity is discussed for finite element and wavelet methods. The book has been written for graduate students and scientists who want to study and to numerically analyze nonlinear elliptic differential equations in Mathematics, Science and Engineering. It can be used as material for graduate courses or advanced seminars.

Numerical Analysis of Multiscale Problems

Numerical Analysis of Multiscale Problems PDF Author: Ivan G. Graham
Publisher: Springer Science & Business Media
ISBN: 3642220614
Category : Mathematics
Languages : en
Pages : 374
Book Description
The 91st London Mathematical Society Durham Symposium took place from July 5th to 15th 2010, with more than 100 international participants attending. The Symposium focused on Numerical Analysis of Multiscale Problems and this book contains 10 invited articles from some of the meeting's key speakers, covering a range of topics of contemporary interest in this area. Articles cover the analysis of forward and inverse PDE problems in heterogeneous media, high-frequency wave propagation, atomistic-continuum modeling and high-dimensional problems arising in modeling uncertainty. Novel upscaling and preconditioning techniques, as well as applications to turbulent multi-phase flow, and to problems of current interest in materials science are all addressed. As such this book presents the current state-of-the-art in the numerical analysis of multiscale problems and will be of interest to both practitioners and mathematicians working in those fields.