**Author**: Thomas A. Weber

**Publisher:**MIT Press

**ISBN:**0262015730

**Category :**Business & Economics

**Languages :**en

**Pages :**387

Skip to content
## Bungei Journalism

# Optimal Control Theory with Applications in Economics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. **Download Optimal Control Theory with Applications in Economics PDF full book**. Access full book title **Optimal Control Theory with Applications in Economics** by Thomas A. Weber. Download full books in PDF and EPUB format.
## Optimal Control Theory with Applications in Economics

**Author**: Thomas A. Weber

**Publisher:** MIT Press

**ISBN:** 0262015730

**Category : **Business & Economics

**Languages : **en

**Pages : **387

**Book Description**

A rigorous introduction to optimal control theory, with an emphasis on applications in economics. This book bridges optimal control theory and economics, discussing ordinary differential equations, optimal control, game theory, and mechanism design in one volume. Technically rigorous and largely self-contained, it provides an introduction to the use of optimal control theory for deterministic continuous-time systems in economics. The theory of ordinary differential equations (ODEs) is the backbone of the theory developed in the book, and chapter 2 offers a detailed review of basic concepts in the theory of ODEs, including the solution of systems of linear ODEs, state-space analysis, potential functions, and stability analysis. Following this, the book covers the main results of optimal control theory, in particular necessary and sufficient optimality conditions; game theory, with an emphasis on differential games; and the application of control-theoretic concepts to the design of economic mechanisms. Appendixes provide a mathematical review and full solutions to all end-of-chapter problems. The material is presented at three levels: single-person decision making; games, in which a group of decision makers interact strategically; and mechanism design, which is concerned with a designer's creation of an environment in which players interact to maximize the designer's objective. The book focuses on applications; the problems are an integral part of the text. It is intended for use as a textbook or reference for graduate students, teachers, and researchers interested in applications of control theory beyond its classical use in economic growth. The book will also appeal to readers interested in a modeling approach to certain practical problems involving dynamic continuous-time models.

## Optimal Control Theory with Applications in Economics

**Author**: Thomas A. Weber

**Publisher:** MIT Press

**ISBN:** 0262015730

**Category : **Business & Economics

**Languages : **en

**Pages : **387

**Book Description**

A rigorous introduction to optimal control theory, with an emphasis on applications in economics. This book bridges optimal control theory and economics, discussing ordinary differential equations, optimal control, game theory, and mechanism design in one volume. Technically rigorous and largely self-contained, it provides an introduction to the use of optimal control theory for deterministic continuous-time systems in economics. The theory of ordinary differential equations (ODEs) is the backbone of the theory developed in the book, and chapter 2 offers a detailed review of basic concepts in the theory of ODEs, including the solution of systems of linear ODEs, state-space analysis, potential functions, and stability analysis. Following this, the book covers the main results of optimal control theory, in particular necessary and sufficient optimality conditions; game theory, with an emphasis on differential games; and the application of control-theoretic concepts to the design of economic mechanisms. Appendixes provide a mathematical review and full solutions to all end-of-chapter problems. The material is presented at three levels: single-person decision making; games, in which a group of decision makers interact strategically; and mechanism design, which is concerned with a designer's creation of an environment in which players interact to maximize the designer's objective. The book focuses on applications; the problems are an integral part of the text. It is intended for use as a textbook or reference for graduate students, teachers, and researchers interested in applications of control theory beyond its classical use in economic growth. The book will also appeal to readers interested in a modeling approach to certain practical problems involving dynamic continuous-time models.

## Control and Optimal Control Theories with Applications

**Author**: D N Burghes

**Publisher:** Elsevier

**ISBN:** 0857099493

**Category : **Mathematics

**Languages : **en

**Pages : **400

**Book Description**

This sound introduction to classical and modern control theory concentrates on fundamental concepts. Employing the minimum of mathematical elaboration, it investigates the many applications of control theory to varied and important present-day problems, e.g. economic growth, resource depletion, disease epidemics, exploited population, and rocket trajectories. An original feature is the amount of space devoted to the important and fascinating subject of optimal control. The work is divided into two parts. Part one deals with the control of linear time-continuous systems, using both transfer function and state-space methods. The ideas of controllability, observability and minimality are discussed in comprehensible fashion. Part two introduces the calculus of variations, followed by analysis of continuous optimal control problems. Each topic is individually introduced and carefully explained with illustrative examples and exercises at the end of each chapter to help and test the reader’s understanding. Solutions are provided at the end of the book. Investigates the many applications of control theory to varied and important present-day problems Deals with the control of linear time-continuous systems, using both transfer function and state-space methods Introduces the calculus of variations, followed by analysis of continuous optimal control problems

## Optimal Control Theory for Applications

**Author**: David G. Hull

**Publisher:** Springer Science & Business Media

**ISBN:** 1475741804

**Category : **Technology & Engineering

**Languages : **en

**Pages : **384

**Book Description**

The published material represents the outgrowth of teaching analytical optimization to aerospace engineering graduate students. To make the material available to the widest audience, the prerequisites are limited to calculus and differential equations. It is also a book about the mathematical aspects of optimal control theory. It was developed in an engineering environment from material learned by the author while applying it to the solution of engineering problems. One goal of the book is to help engineering graduate students learn the fundamentals which are needed to apply the methods to engineering problems. The examples are from geometry and elementary dynamical systems so that they can be understood by all engineering students. Another goal of this text is to unify optimization by using the differential of calculus to create the Taylor series expansions needed to derive the optimality conditions of optimal control theory.

## Optimal Control

**Author**: Leslie M. Hocking

**Publisher:** Oxford University Press

**ISBN:** 9780198596820

**Category : **Computers

**Languages : **en

**Pages : **276

**Book Description**

Systems that evolve with time occur frequently in nature and modelling the behavior of such systems provides an important application of mathematics. These systems can be completely deterministic, but it may be possible too to control their behavior by intervention through "controls". The theory of optimal control is concerned with determining such controls which, at minimum cost, either direct the system along a given trajectory or enable it to reach a given point in its state space. This textbook is a straightforward introduction to the theory of optimal control with an emphasis on presenting many different applications. Professor Hocking has taken pains to ensure that the theory is developed to display the main themes of the arguments but without using sophisticated mathematical tools. Problems in this setting can arise across a wide range of subjects and there are illustrative examples of systems from fields as diverse as dynamics, economics, population control, and medicine. Throughout there are many worked examples, and numerous exercises (with solutions) are provided.

## Solutions Manual for Optimal Control Theory

**Author**: Suresh P. Sethi

**Publisher:** Springer

**ISBN:**

**Category : **Business & Economics

**Languages : **en

**Pages : **794

**Book Description**

## Optimal Control

**Author**: Michael Athans

**Publisher:** Courier Corporation

**ISBN:** 0486453286

**Category : **Technology & Engineering

**Languages : **en

**Pages : **900

**Book Description**

Geared toward advanced undergraduate and graduate engineering students, this text introduces the theory and applications of optimal control. It serves as a bridge to the technical literature, enabling students to evaluate the implications of theoretical control work, and to judge the merits of papers on the subject. Rather than presenting an exhaustive treatise, Optimal Control offers a detailed introduction that fosters careful thinking and disciplined intuition. It develops the basic mathematical background, with a coherent formulation of the control problem and discussions of the necessary conditions for optimality based on the maximum principle of Pontryagin. In-depth examinations cover applications of the theory to minimum time, minimum fuel, and to quadratic criteria problems. The structure, properties, and engineering realizations of several optimal feedback control systems also receive attention. Special features include numerous specific problems, carried through to engineering realization in block diagram form. The text treats almost all current examples of control problems that permit analytic solutions, and its unified approach makes frequent use of geometric ideas to encourage students' intuition.

## Optimal Control Theory

**Author**: Suresh P. Sethi

**Publisher:** Springer

**ISBN:** 3319982370

**Category : **Business & Economics

**Languages : **en

**Pages : **565

**Book Description**

This fully revised 3rd edition offers an introduction to optimal control theory and its diverse applications in management science and economics. It brings to students the concept of the maximum principle in continuous, as well as discrete, time by using dynamic programming and Kuhn-Tucker theory. While some mathematical background is needed, the emphasis of the book is not on mathematical rigor, but on modeling realistic situations faced in business and economics. The book exploits optimal control theory to the functional areas of management including finance, production and marketing and to economics of growth and of natural resources. In addition, this new edition features materials on stochastic Nash and Stackelberg differential games and an adverse selection model in the principal-agent framework. The book provides exercises for each chapter and answers to selected exercises to help deepen the understanding of the material presented. Also included are appendices comprised of supplementary material on the solution of differential equations, the calculus of variations and its relationships to the maximum principle, and special topics including the Kalman filter, certainty equivalence, singular control, a global saddle point theorem, Sethi-Skiba points, and distributed parameter systems. Optimal control methods are used to determine optimal ways to control a dynamic system. The theoretical work in this field serves as a foundation for the book, which the author has applied to business management problems developed from his research and classroom instruction. The new edition has been completely refined and brought up to date. Ultimately this should continue to be a valuable resource for graduate courses on applied optimal control theory, but also for financial and industrial engineers, economists, and operational researchers concerned with the application of dynamic optimization in their fields.

## The Theory and Application of Linear Optimal Control

**Author**: Edmund G. Rynaski

**Publisher:**

**ISBN:**

**Category : **Control theory

**Languages : **en

**Pages : **230

**Book Description**

Linear optimal control theory has produced an important synthesis technique for the design of linear multivariable systems. In the present study, efficient design procedures, based on the general optimal theory, have been developed. These procedures make use of design techniques which are similar to the conventional methods of control system analysis. Specifically, a scalar expression is developed which relates the closed-loop poles of the multi- controller, multi-output optimal system to the weighting parameters of a quadratic performance index. Methods analogous to the root locus and Bode plot techniques are then developed for the systematic analysis of this expression. Examples using the aircraft longitudinal equations of motion to represent the object to be controlled are presented to illustrate design procedures which can be carried out in either the time or frequency domains. Both the model-in -the- performance-index and model-following concepts are employed in several of the examples to illustrate the model approach to optimal design.

## PRACTICAL APPLICATION O OPTIMAL CONTROL THEORY

**Author**: QUAN-FANG WANG

**Publisher:** Lambert Academic Publishing

**ISBN:** 3846554642

**Category : **Mathematics

**Languages : **en

**Pages : **216

**Book Description**

## Optimal Control Theory and Static Optimization in Economics

**Author**: Daniel Léonard

**Publisher:** Cambridge University Press

**ISBN:** 9780521337465

**Category : **Business & Economics

**Languages : **en

**Pages : **372

**Book Description**

Optimal control theory is a technique being used increasingly by academic economists to study problems involving optimal decisions in a multi-period framework. This textbook is designed to make the difficult subject of optimal control theory easily accessible to economists while at the same time maintaining rigour. Economic intuitions are emphasized, and examples and problem sets covering a wide range of applications in economics are provided to assist in the learning process. Theorems are clearly stated and their proofs are carefully explained. The development of the text is gradual and fully integrated, beginning with simple formulations and progressing to advanced topics such as control parameters, jumps in state variables, and bounded state space. For greater economy and elegance, optimal control theory is introduced directly, without recourse to the calculus of variations. The connection with the latter and with dynamic programming is explained in a separate chapter. A second purpose of the book is to draw the parallel between optimal control theory and static optimization. Chapter 1 provides an extensive treatment of constrained and unconstrained maximization, with emphasis on economic insight and applications. Starting from basic concepts, it derives and explains important results, including the envelope theorem and the method of comparative statics. This chapter may be used for a course in static optimization. The book is largely self-contained. No previous knowledge of differential equations is required.

eBook Journalism in PDF, ePub, Mobi and Kindle

A rigorous introduction to optimal control theory, with an emphasis on applications in economics. This book bridges optimal control theory and economics, discussing ordinary differential equations, optimal control, game theory, and mechanism design in one volume. Technically rigorous and largely self-contained, it provides an introduction to the use of optimal control theory for deterministic continuous-time systems in economics. The theory of ordinary differential equations (ODEs) is the backbone of the theory developed in the book, and chapter 2 offers a detailed review of basic concepts in the theory of ODEs, including the solution of systems of linear ODEs, state-space analysis, potential functions, and stability analysis. Following this, the book covers the main results of optimal control theory, in particular necessary and sufficient optimality conditions; game theory, with an emphasis on differential games; and the application of control-theoretic concepts to the design of economic mechanisms. Appendixes provide a mathematical review and full solutions to all end-of-chapter problems. The material is presented at three levels: single-person decision making; games, in which a group of decision makers interact strategically; and mechanism design, which is concerned with a designer's creation of an environment in which players interact to maximize the designer's objective. The book focuses on applications; the problems are an integral part of the text. It is intended for use as a textbook or reference for graduate students, teachers, and researchers interested in applications of control theory beyond its classical use in economic growth. The book will also appeal to readers interested in a modeling approach to certain practical problems involving dynamic continuous-time models.

A rigorous introduction to optimal control theory, with an emphasis on applications in economics. This book bridges optimal control theory and economics, discussing ordinary differential equations, optimal control, game theory, and mechanism design in one volume. Technically rigorous and largely self-contained, it provides an introduction to the use of optimal control theory for deterministic continuous-time systems in economics. The theory of ordinary differential equations (ODEs) is the backbone of the theory developed in the book, and chapter 2 offers a detailed review of basic concepts in the theory of ODEs, including the solution of systems of linear ODEs, state-space analysis, potential functions, and stability analysis. Following this, the book covers the main results of optimal control theory, in particular necessary and sufficient optimality conditions; game theory, with an emphasis on differential games; and the application of control-theoretic concepts to the design of economic mechanisms. Appendixes provide a mathematical review and full solutions to all end-of-chapter problems. The material is presented at three levels: single-person decision making; games, in which a group of decision makers interact strategically; and mechanism design, which is concerned with a designer's creation of an environment in which players interact to maximize the designer's objective. The book focuses on applications; the problems are an integral part of the text. It is intended for use as a textbook or reference for graduate students, teachers, and researchers interested in applications of control theory beyond its classical use in economic growth. The book will also appeal to readers interested in a modeling approach to certain practical problems involving dynamic continuous-time models.

This sound introduction to classical and modern control theory concentrates on fundamental concepts. Employing the minimum of mathematical elaboration, it investigates the many applications of control theory to varied and important present-day problems, e.g. economic growth, resource depletion, disease epidemics, exploited population, and rocket trajectories. An original feature is the amount of space devoted to the important and fascinating subject of optimal control. The work is divided into two parts. Part one deals with the control of linear time-continuous systems, using both transfer function and state-space methods. The ideas of controllability, observability and minimality are discussed in comprehensible fashion. Part two introduces the calculus of variations, followed by analysis of continuous optimal control problems. Each topic is individually introduced and carefully explained with illustrative examples and exercises at the end of each chapter to help and test the reader’s understanding. Solutions are provided at the end of the book. Investigates the many applications of control theory to varied and important present-day problems Deals with the control of linear time-continuous systems, using both transfer function and state-space methods Introduces the calculus of variations, followed by analysis of continuous optimal control problems

The published material represents the outgrowth of teaching analytical optimization to aerospace engineering graduate students. To make the material available to the widest audience, the prerequisites are limited to calculus and differential equations. It is also a book about the mathematical aspects of optimal control theory. It was developed in an engineering environment from material learned by the author while applying it to the solution of engineering problems. One goal of the book is to help engineering graduate students learn the fundamentals which are needed to apply the methods to engineering problems. The examples are from geometry and elementary dynamical systems so that they can be understood by all engineering students. Another goal of this text is to unify optimization by using the differential of calculus to create the Taylor series expansions needed to derive the optimality conditions of optimal control theory.

Systems that evolve with time occur frequently in nature and modelling the behavior of such systems provides an important application of mathematics. These systems can be completely deterministic, but it may be possible too to control their behavior by intervention through "controls". The theory of optimal control is concerned with determining such controls which, at minimum cost, either direct the system along a given trajectory or enable it to reach a given point in its state space. This textbook is a straightforward introduction to the theory of optimal control with an emphasis on presenting many different applications. Professor Hocking has taken pains to ensure that the theory is developed to display the main themes of the arguments but without using sophisticated mathematical tools. Problems in this setting can arise across a wide range of subjects and there are illustrative examples of systems from fields as diverse as dynamics, economics, population control, and medicine. Throughout there are many worked examples, and numerous exercises (with solutions) are provided.

Geared toward advanced undergraduate and graduate engineering students, this text introduces the theory and applications of optimal control. It serves as a bridge to the technical literature, enabling students to evaluate the implications of theoretical control work, and to judge the merits of papers on the subject. Rather than presenting an exhaustive treatise, Optimal Control offers a detailed introduction that fosters careful thinking and disciplined intuition. It develops the basic mathematical background, with a coherent formulation of the control problem and discussions of the necessary conditions for optimality based on the maximum principle of Pontryagin. In-depth examinations cover applications of the theory to minimum time, minimum fuel, and to quadratic criteria problems. The structure, properties, and engineering realizations of several optimal feedback control systems also receive attention. Special features include numerous specific problems, carried through to engineering realization in block diagram form. The text treats almost all current examples of control problems that permit analytic solutions, and its unified approach makes frequent use of geometric ideas to encourage students' intuition.

This fully revised 3rd edition offers an introduction to optimal control theory and its diverse applications in management science and economics. It brings to students the concept of the maximum principle in continuous, as well as discrete, time by using dynamic programming and Kuhn-Tucker theory. While some mathematical background is needed, the emphasis of the book is not on mathematical rigor, but on modeling realistic situations faced in business and economics. The book exploits optimal control theory to the functional areas of management including finance, production and marketing and to economics of growth and of natural resources. In addition, this new edition features materials on stochastic Nash and Stackelberg differential games and an adverse selection model in the principal-agent framework. The book provides exercises for each chapter and answers to selected exercises to help deepen the understanding of the material presented. Also included are appendices comprised of supplementary material on the solution of differential equations, the calculus of variations and its relationships to the maximum principle, and special topics including the Kalman filter, certainty equivalence, singular control, a global saddle point theorem, Sethi-Skiba points, and distributed parameter systems. Optimal control methods are used to determine optimal ways to control a dynamic system. The theoretical work in this field serves as a foundation for the book, which the author has applied to business management problems developed from his research and classroom instruction. The new edition has been completely refined and brought up to date. Ultimately this should continue to be a valuable resource for graduate courses on applied optimal control theory, but also for financial and industrial engineers, economists, and operational researchers concerned with the application of dynamic optimization in their fields.

Linear optimal control theory has produced an important synthesis technique for the design of linear multivariable systems. In the present study, efficient design procedures, based on the general optimal theory, have been developed. These procedures make use of design techniques which are similar to the conventional methods of control system analysis. Specifically, a scalar expression is developed which relates the closed-loop poles of the multi- controller, multi-output optimal system to the weighting parameters of a quadratic performance index. Methods analogous to the root locus and Bode plot techniques are then developed for the systematic analysis of this expression. Examples using the aircraft longitudinal equations of motion to represent the object to be controlled are presented to illustrate design procedures which can be carried out in either the time or frequency domains. Both the model-in -the- performance-index and model-following concepts are employed in several of the examples to illustrate the model approach to optimal design.

Optimal control theory is a technique being used increasingly by academic economists to study problems involving optimal decisions in a multi-period framework. This textbook is designed to make the difficult subject of optimal control theory easily accessible to economists while at the same time maintaining rigour. Economic intuitions are emphasized, and examples and problem sets covering a wide range of applications in economics are provided to assist in the learning process. Theorems are clearly stated and their proofs are carefully explained. The development of the text is gradual and fully integrated, beginning with simple formulations and progressing to advanced topics such as control parameters, jumps in state variables, and bounded state space. For greater economy and elegance, optimal control theory is introduced directly, without recourse to the calculus of variations. The connection with the latter and with dynamic programming is explained in a separate chapter. A second purpose of the book is to draw the parallel between optimal control theory and static optimization. Chapter 1 provides an extensive treatment of constrained and unconstrained maximization, with emphasis on economic insight and applications. Starting from basic concepts, it derives and explains important results, including the envelope theorem and the method of comparative statics. This chapter may be used for a course in static optimization. The book is largely self-contained. No previous knowledge of differential equations is required.