Author: K. A. Lurie
Publisher:
ISBN: 9781475792638
Category :
Languages : en
Pages : 512
Book Description
Author: K. A. Lurie
Publisher:
ISBN: 9781475792638
Category :
Languages : en
Pages : 512
Book Description
Author: K.A. Lurie
Publisher: Springer Science & Business Media
ISBN: 147579262X
Category : Science
Languages : en
Pages : 499
Book Description
This book represents an extended and substantially revised version of my earlierbook, Optimal Control in Problems ofMathematical Physics,originally published in Russian in 1975. About 60% of the text has been completely revised and major additions have been included which have produced a practically new text. My aim was to modernize the presentation but also to preserve the original results, some of which are little known to a Western reader. The idea of composites, which is the core of the modern theory of optimization, was initiated in the early seventies. The reader will find here its implementation in the problem of optimal conductivity distribution in an MHD-generatorchannel flow.Sincethen it has emergedinto an extensive theory which is undergoing a continuous development. The book does not pretend to be a textbook, neither does it offer a systematic presentation of the theory. Rather, it reflects a concept which I consider as fundamental in the modern approach to optimization of dis tributed systems. Bibliographical notes,though extensive, do not pretend to be exhaustive as well. My thanks are due to ProfessorJean-Louis Armand and ProfessorWolf Stadler whose friendly assistance in translating and polishing the text was so valuable. I am indebted to Mrs. Kathleen Durand and Mrs. Colleen Lewis for the hard job of typing large portions of the manuscript.
Author: A. V. Fursikov
Publisher: American Mathematical Soc.
ISBN: 9780821813829
Category : Mathematics
Languages : en
Pages : 305
Book Description
This volume presents the analysis of optimal control problems for systems described by partial differential equations. The book offers simple and clear exposition of main results in this area. The methods proposed by the author cover cases where the controlled system corresponds to well-posed or ill-posed boundary value problems, which can be linear or nonlinear. The uniqueness problem for the solution of nonlinear optimal control problems is analysed in various settings. Solutions of several previously unsolved problems are given. In addition, general methods are applied to the study of two problems connected with optimal control of fluid flows described by the Navier-Stokes equations.
Author: Charles K. Chui
Publisher: Springer Science & Business Media
ISBN: 3642613128
Category : Science
Languages : en
Pages : 155
Book Description
A knowledge of linear systems provides a firm foundation for the study of optimal control theory and many areas of system theory and signal processing. State-space techniques developed since the early sixties have been proved to be very effective. The main objective of this book is to present a brief and somewhat complete investigation on the theory of linear systems, with emphasis on these techniques, in both continuous-time and discrete-time settings, and to demonstrate an application to the study of elementary (linear and nonlinear) optimal control theory. An essential feature of the state-space approach is that both time-varying and time-invariant systems are treated systematically. When time-varying systems are considered, another important subject that depends very much on the state-space formulation is perhaps real-time filtering, prediction, and smoothing via the Kalman filter. This subject is treated in our monograph entitled "Kalman Filtering with Real-Time Applications" published in this Springer Series in Information Sciences (Volume 17). For time-invariant systems, the recent frequency domain approaches using the techniques of Adamjan, Arov, and Krein (also known as AAK), balanced realization, and oo H theory via Nevanlinna-Pick interpolation seem very promising, and this will be studied in our forthcoming monograph entitled "Mathematical Ap proach to Signal Processing and System Theory". The present elementary treatise on linear system theory should provide enough engineering and mathe of these two subjects.
Author: Peter I. Kogut
Publisher: Springer Science & Business Media
ISBN: 0817681493
Category : Science
Languages : en
Pages : 636
Book Description
In the development of optimal control, the complexity of the systems to which it is applied has increased significantly, becoming an issue in scientific computing. In order to carry out model-reduction on these systems, the authors of this work have developed a method based on asymptotic analysis. Moving from abstract explanations to examples and applications with a focus on structural network problems, they aim at combining techniques of homogenization and approximation. Optimal Control Problems for Partial Differential Equations on Reticulated Domains is an excellent reference tool for graduate students, researchers, and practitioners in mathematics and areas of engineering involving reticulated domains.
Author: A. V. Fursikov
Publisher: American Mathematical Soc.
ISBN: 9780821897904
Category : Mathematics
Languages : en
Pages : 324
Book Description
This volume presents the analysis of optimal control problems for systems described by partial differential equations. The book offers simple and clear exposition of main results in this area. The methods proposed by the author cover cases where the controlled system corresponds to well-posed or ill-posed boundary value problems, which can be linear or nonlinear. The uniqueness problem for the solution of nonlinear optimal control problems is analyzed in various settings. Solutions of several previously unsolved problems are given. In addition, general methods are applied to the study of two problems connected with optimal control of fluid flows described by the Navier-Stokes equations.
Author: Steven Cox
Publisher: American Mathematical Soc.
ISBN: 0821806041
Category : Differential equations, Partial
Languages : en
Pages : 362
Book Description
The problems considered range from basic theoretical issues in the calculus of variations - such as infinite dimensional Hamilton Jacobi equations, saddle point principles, and issues of unique continuation - to ones focusing on application and computation, where theoretical tools are tuned to more specifically defined problems.
Author: Angelo Miele
Publisher: Springer Science & Business Media
ISBN: 147579259X
Category : Technology & Engineering
Languages : en
Pages : 514
Book Description
This book contains the proceedings ofthe meeting on "Applied Mathematics in the Aerospace Field," held in Erice, Sicily, Italy from September 3 to September 10, 1991. The occasion of the meeting was the 12th Course of the School of Mathematics "Guido Stampacchia," directed by Professor Franco Giannessi of the University of Pisa. The school is affiliated with the International Center for Scientific Culture "Ettore Majorana," which is directed by Professor Antonino Zichichi of the University of Bologna. The objective of the course was to give a perspective on the state-of the-art and research trends concerning the application of mathematics to aerospace science and engineering. The course was structured with invited lectures and seminars concerning fundamental aspects of differential equa tions, mathematical programming, optimal control, numerical methods, per turbation methods, and variational methods occurring in flight mechanics, astrodynamics, guidance, control, aircraft design, fluid mechanics, rarefied gas dynamics, and solid mechanics. The book includes 20 chapters by 23 contributors from the United States, Germany, and Italy and is intended to be an important reference work on the application of mathematics to the aerospace field. It reflects the belief of the course directors that strong interaction between mathematics and engineering is beneficial, indeed essential, to progresses in both areas.
Author: Ara S. Avetisyan
Publisher: Cambridge Scholars Publishing
ISBN: 1527509133
Category : Science
Languages : en
Pages : 223
Book Description
The book is about the possibilities of involvement of the well-known Green’s function method in exact or approximate controllability analysis for dynamic systems. Due to existing extensions of the Green’s function notion to nonlinear systems, the approach developed here is valid for systems with both linear and nonlinear dynamics. The book offers a number of particular examples, covering specific issues that make the controllability analysis sophisticated, such as coordinate dependent characteristics, point sources, unbounded domains, higher dimensions, and specific nonlinearities. It also offers extensive numerical analysis, which reveals both advantages and drawbacks of the approach. As such, the book will be of interest to researchers interested in the theory and practice of control, as well as PhD and Master’s students.
Author: Piero Bassanini
Publisher: Springer Science & Business Media
ISBN: 1489918752
Category : Mathematics
Languages : en
Pages : 444
Book Description
This book is a product of the experience of the authors in teaching partial differential equations to students of mathematics, physics, and engineering over a period of 20 years. Our goal in writing it has been to introduce the subject with precise and rigorous analysis on the one hand, and interesting and significant applications on the other. The starting level of the book is at the first-year graduate level in a U.S. university. Previous experience with partial differential equations is not required, but the use of classical analysis to find solutions of specific problems is not emphasized. From that perspective our treatment is decidedly theoretical. We have avoided abstraction and full generality in many situations, however. Our plan has been to introduce fundamental ideas in relatively simple situations and to show their impact on relevant applications. The student is then, we feel, well prepared to fight through more specialized treatises. There are parts of the exposition that require Lebesgue integration, distributions and Fourier transforms, and Sobolev spaces. We have included a long appendix, Chapter 8, giving precise statements of all results used. This may be thought of as an introduction to these topics. The reader who is not familiar with these subjects may refer to parts of Chapter 8 as needed or become somewhat familiar with them as prerequisite and treat Chapter 8 as Chapter O.